Hidden AR Process and Adaptive Kalman Filter (2304.09531v1)
Abstract: The model of partially observed linear system depending on some unknown parameters is considered. An approximation of the unobserved component is proposed. This approximation is realized in three steps. First an estimator of the method of moments of unknown parameter is constructed. Then this estimator is used for defining the One-step MLE-process and finally the last estimator is substituted to the equations of Kalman filter. The solution of obtained equations provide us the approximation (adaptive Kalman filter). The asymptotic properties of all mentioned estimators and MLE and Bayesian estimators of the unknown parameters are described. The asymptotic efficiency of adaptive filtering is discussed.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.