A spintronic Huxley-Hodgkin-analogue neuron implemented with a single magnetic tunnel junction (2304.06343v1)
Abstract: Spiking neural networks aim to emulate the brain's properties to achieve similar parallelism and high-processing power. A caveat of these neural networks is the high computational cost to emulate, while current proposals for analogue implementations are energy inefficient and not scalable. We propose a device based on a single magnetic tunnel junction to perform neuron firing for spiking neural networks without the need of any resetting procedure. We leverage two physics, magnetism and thermal effects, to obtain a bio-realistic spiking behavior analogous to the Huxley-Hodgkin model of the neuron. The device is also able to emulate the simpler Leaky-Integrate and Fire model. Numerical simulations using experimental-based parameters demonstrate firing frequency in the MHz to GHz range under constant input at room temperature. The compactness, scalability, low cost, CMOS-compatibility, and power efficiency of magnetic tunnel junctions advocate for their broad use in hardware implementations of spiking neural networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.