Localizing Model Behavior with Path Patching (2304.05969v2)
Abstract: Localizing behaviors of neural networks to a subset of the network's components or a subset of interactions between components is a natural first step towards analyzing network mechanisms and possible failure modes. Existing work is often qualitative and ad-hoc, and there is no consensus on the appropriate way to evaluate localization claims. We introduce path patching, a technique for expressing and quantitatively testing a natural class of hypotheses expressing that behaviors are localized to a set of paths. We refine an explanation of induction heads, characterize a behavior of GPT-2, and open source a framework for efficiently running similar experiments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.