Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices (2304.05460v2)

Published 11 Apr 2023 in math.NA and cs.NA

Abstract: The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the Adaptive Factorized Nystr\"om (AFN) preconditioner. The preconditioner is designed for the case where the rank k of the Nystr\"om approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nystr\"om approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.