Critical exponent Neumann problem with Hardy-Littlewood-Sobolev nonlinearity (2304.05447v1)
Abstract: In this article, we study the Brezis-Nirenberg type problem of nonlinear Choquard equation with Neumann boundary condition \begin{equation*} \begin{aligned} -\Delta u &= \lambda \alpha(x)u + \left(\int\limits_{\Omega}\frac{u(y){2_{\mu}}}{|x-y|{\mu}}\;dy\right)u{2^_{\mu}-1}, \;\;\text{in} \; \Omega,\ \frac{\partial u}{\partial \nu} &= 0\;\; \text{on} \; \partial\Omega, \end{aligned} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}N$ $(N\geq 4)$, $\nu$ is the unit outer normal to $\partial \Omega$ and $\mu \in (0, N)$. According to the parameter $\lambda$, we prove necessary and sufficient conditions for the existence and non-existence of positive weak solutions to the problem. The proof is based on variational arguments.