2000 character limit reached
Fractional Hardy-Sobolev elliptic problems (1503.00216v1)
Published 1 Mar 2015 in math.AP
Abstract: In this paper, we study the following singular nonlinear elliptic problem \begin{equation}\label{eq:1} \left{ \begin{array}{ll} \displaystyle (-\Delta){\frac \alpha 2} u=\lambda |u|{r-2}u+\mu\frac{|u|{q-2}u}{|x|{s}}\quad &{\rm in }\quad \Omega, \ \ u=0 &{\rm on }\quad \partial\Omega, \end{array} \right. \end{equation} where $\Omega$ is a smooth bounded domain in $\mathbb RN$ with $0\in \Omega$, $\lambda,\mu>0,0<s\leq\alpha$, $(-\Delta){\frac \alpha 2}$ is the fractional Laplacian operator with $0<\alpha<2$. We establish existence results of problem \eqref{eq:1} for subcritical, Sobolev critical and Hardy-Sobolev critical cases.