Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity (1711.02835v1)
Abstract: This article concerns about the existence and multiplicity of weak solutions for the following nonlinear doubly nonlocal problem with critical nonlinearity in the sense of Hardy-Littlewood-Sobolev inequality \begin{equation*} \left{ \begin{split} (-\Delta)su &= \lambda |u|{q-2}u + \left(\int_{\Omega}\frac{|v(y)|{2*_\mu}}{|x-y|\mu}~\mathrm{d}y\right) |u|{2*_\mu-2}u\; \text{in}\; \Omega (-\Delta)sv &= \delta |v|{q-2}v + \left(\int_{\Om}\frac{|u(y)|{2*_\mu}}{|x-y|\mu}~\mathrm{d}y \right) |v|{2*_\mu-2}v \; \text{in}\; \Omega u &=v=0\; \text{in}\; \mb Rn\setminus\Omega, \end{split} \right. \end{equation*} where $\Omega$ is a smooth bounded domain in $\mb Rn$, $n >2s$, $s \in (0,1)$, $(-\Delta)s$ is the well known fractional Laplacian, $\mu \in (0,n)$, $2*_\mu = \displaystyle\frac{2n-\mu}{n-2s}$ is the upper critical exponent in the Hardy-Littlewood-Sobolev inequality, $1<q\<2$ and $\lambda,\delta \>0$ are real parameters. We study the fibering maps corresponding to the functional associated with $(P_{\lambda,\delta})$ and show that minimization over suitable subsets of Nehari manifold renders the existence of atleast two non trivial solutions of $(P_{\la,\delta})$ for suitable range of $\la$ and $\delta$.