Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 151 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Inexact Online Proximal Mirror Descent for time-varying composite optimization (2304.04710v1)

Published 10 Apr 2023 in math.OC

Abstract: In this paper, we consider the online proximal mirror descent for solving the time-varying composite optimization problems. For various applications, the algorithm naturally involves the errors in the gradient and proximal operator. We obtain sharp estimates on the dynamic regret of the algorithm when the regular part of the cost is convex and smooth. If the Bregman distance is given by the Euclidean distance, our result also improves the previous work in two ways: (i) We establish a sharper regret bound compared to the previous work in the sense that our estimate does not involve $O(T)$ term appearing in that work. (ii) We also obtain the result when the domain is the whole space $\mathbb{R}n$, whereas the previous work was obtained only for bounded domains. We also provide numerical tests for problems involving the errors in the gradient and proximal operator.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.