Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Signal Variation Metrics and Graph Fourier Transforms for Directed Graphs (2304.04350v1)

Published 10 Apr 2023 in eess.SP

Abstract: In this paper we consider the problem of constructing graph Fourier transforms (GFTs) for directed graphs (digraphs), with a focus on developing multiple GFT designs that can capture different types of variation over the digraph node-domain. Specifically, for any given digraph we propose three GFT designs based on the polar decomposition. Our method is closely related to existing polar decomposition based GFT designs, but with added interpretability in the digraph node-domain. Each of our proposed digraph GFTs has a clear node domain variation interpretation, so that one or more of the GFTs can be used to extract different insights from available graph signals. We demonstrate the benefits of our approach experimentally using M-block cyclic graphs, showing that the diffusion of signals on the graph leads to changes in the spectrum obtained from our proposed GFTs, but cannot be observed with the conventional GFT definition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.