Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Microseismic source imaging using physics-informed neural networks with hard constraints (2304.04315v2)

Published 9 Apr 2023 in physics.geo-ph, cs.LG, and physics.comp-ph

Abstract: Microseismic source imaging plays a significant role in passive seismic monitoring. However, such a process is prone to failure due to aliasing when dealing with sparsely measured data. Thus, we propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs), which can generate focused source images, even with very sparse recordings. We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image. To be more specific, we modify the representation of the frequency-domain wavefield to inherently satisfy the boundary conditions (the measured data on the surface) by means of a hard constraint, which helps to avoid the difficulty in balancing the data and PDE losses in PINNs. Furthermore, we propose the causality loss implementation with respect to depth to enhance the convergence of PINNs. The numerical experiments on the Overthrust model show that the method can admit reliable and accurate source imaging for single- or multiple- sources and even in passive monitoring settings. Compared with the time-reversal method, the results of the proposed method are consistent with numerical methods but less noisy. Then, we further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. B. R. Lienert, E. Berg, and L. N. Frazer, “Hypocenter: An earthquake location method using centered, scaled, and adaptively damped least squares,” Bulletin of the Seismological Society of America, vol. 76, no. 3, pp. 771–783, 1986.
  2. S. Miao, H. Zhang, Y. Tan, and Y. Lin, “Development of a new high resolution waveform migration location method and its applications to induced seismicity,” Earth and Planetary Physics, vol. 5, no. 6, pp. 532–546, 2021.
  3. H. Kao and S.-J. Shan, “The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space,” Geophysical Journal International, vol. 157, no. 2, pp. 589–594, apr 2004. [Online]. Available: https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.2004.02276.x
  4. M. Ishii, P. M. Shearer, H. Houston, and J. E. Vidale, “Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array,” Journal of Geophysical Research, vol. 112, no. B11, p. B11307, nov 2007. [Online]. Available: http://doi.wiley.com/10.1029/2006JB004700
  5. G. A. McMechan, “Determination of source parameters by wavefield extrapolation,” Geophysical Journal International, vol. 71, no. 3, pp. 613–628, dec 1982. [Online]. Available: https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.1982.tb02788.x
  6. D. Gajewski and E. Tessmer, “Reverse modelling for seismic event characterization,” Geophysical Journal International, vol. 163, no. 1, pp. 276–284, 2005.
  7. C. Larmat, J.-P. Montagner, M. Fink, Y. Capdeville, A. Tourin, and E. Clévédé, “Time-reversal imaging of seismic sources and application to the great sumatra earthquake,” Geophysical Research Letters, vol. 33, no. 19, 2006.
  8. B. Artman, I. Podladtchikov, and B. Witten, “Source location using time-reverse imaging,” Geophysical Prospecting, vol. 58, no. 5, pp. 861–873, sep 2010. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2478.2010.00911.x
  9. J. Yang and H. Zhu, “Locating and monitoring microseismicity, hydraulic fracture and earthquake rupture using elastic time-reversal imaging,” Geophysical Journal International, vol. 216, no. 1, pp. 726–744, jan 2019. [Online]. Available: https://academic.oup.com/gji/article/216/1/726/5151337
  10. P. Sava, “Micro-earthquake monitoring with sparsely sampled data,” Journal of Petroleum Exploration and Production Technology, vol. 1, no. 1, pp. 43–49, may 2011. [Online]. Available: http://link.springer.com/10.1007/s13202-011-0005-7
  11. J. Douma and R. Snieder, “Focusing of elastic waves for microseismic imaging,” Geophysical Journal International, vol. 200, no. 1, pp. 390–401, jan 2014. [Online]. Available: http://academic.oup.com/gji/article/200/1/390/752281/Focusing-of-elastic-waves-for-microseismic-imaging
  12. N. Nakata and G. C. Beroza, “Reverse time migration for microseismic sources using the geometric mean as an imaging condition,” GEOPHYSICS, vol. 81, no. 2, pp. KS51–KS60, mar 2016. [Online]. Available: https://library.seg.org/doi/10.1190/geo2015-0278.1
  13. H. Wang and T. Alkhalifah, “Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition,” in EAGE 2017 Annual Conference & Exhibition Online.   European Association of Geoscientists & Engineers, jun 2017. [Online]. Available: http://www.earthdoc.org/publication/publicationdetails/?publication=88978
  14. Y. Lin, H. Zhang, Y. Chen, and J. Li, “Source-independent passive seismic reverse-time structure imaging with grouping imaging condition: Method and application to microseismic events induced by hydraulic fracturing,” Journal of Geophysical Research: Solid Earth, vol. 125, no. 2, p. e2019JB018043, 2020.
  15. Y. Chen, O. M. Saad, M. Bai, X. Liu, and S. Fomel, “A compact program for 3d passive seismic source-location imaging,” Seismological Research Letters, vol. 92, no. 5, pp. 3187–3201, 2021.
  16. R. Kamei and D. Lumley, “Passive seismic imaging and velocity inversion using full wavefield methods,” in 2014 SEG Annual Meeting.   OnePetro, 2014.
  17. J. Kaderli, M. D. McChesney, and S. E. Minkoff, “A self-adjoint velocity-stress full-waveform inversion approach to microseismic source estimationmicroseismic source estimation,” Geophysics, vol. 83, no. 5, pp. R413–R427, 2018.
  18. C. Song, Z. Wu, and T. Alkhalifah, “Passive seismic event estimation using multiscattering waveform inversion,” Geophysics, vol. 84, no. 3, pp. KS59–KS69, 2019.
  19. H. Wang and T. Alkhalifah, “Direct microseismic event location and characterization from passive seismic data using convolutional neural networks,” Geophysics, vol. 86, no. 6, pp. KS109–KS121, 2021.
  20. T. Perol, M. Gharbi, and M. Denolle, “Convolutional neural network for earthquake detection and location,” Science Advances, vol. 4, no. 2, feb 2018. [Online]. Available: https://www.science.org/doi/10.1126/sciadv.1700578
  21. M. Kriegerowski, G. M. Petersen, H. Vasyura‐Bathke, and M. Ohrnberger, “A Deep Convolutional Neural Network for Localization of Clustered Earthquakes Based on Multistation Full Waveforms,” Seismological Research Letters, vol. 90, no. 2A, pp. 510–516, mar 2019. [Online]. Available: https://pubs.geoscienceworld.org/ssa/srl/article/90/2A/510/567690/A-Deep-Convolutional-Neural-Network-for
  22. X. Zhang, J. Zhang, C. Yuan, S. Liu, Z. Chen, and W. Li, “Locating induced earthquakes with a network of seismic stations in Oklahoma via a deep learning method,” Scientific Reports, vol. 10, no. 1, p. 1941, dec 2020. [Online]. Available: http://www.nature.com/articles/s41598-020-58908-5
  23. H. Wang and T. Alkhalifah, “Direct microseismic event location and characterization from passive seismic data using convolutional neural networks,” GEOPHYSICS, vol. 86, no. 6, pp. KS109–KS121, nov 2021. [Online]. Available: https://library.seg.org/doi/10.1190/geo2020-0636.1
  24. Q. Zhang, W. Zhang, X. Wu, J. Zhang, W. Kuang, and X. Si, “Deep learning for efficient microseismic location using source migration-based imaging,” Journal of Geophysical Research: Solid Earth, vol. 127, no. 3, p. e2021JB022649, 2022.
  25. Y. Chen, O. M. Saad, A. Savvaidis, Y. Chen, and S. Fomel, “3d microseismic monitoring using machine learning,” Journal of Geophysical Research: Solid Earth, vol. 127, no. 3, p. e2021JB023842, 2022.
  26. T. Alkhalifah, H. Wang, and O. Ovcharenko, “Mlreal: Bridging the gap between training on synthetic data and real data applications in machine learning,” Artificial Intelligence in Geosciences, vol. 3, pp. 101–114, 2022.
  27. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, jan 1989. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
  28. T. Alkhalifah, C. Song, U. bin Waheed, and Q. Hao, “Wavefield solutions from machine learned functions constrained by the helmholtz equation,” Artificial Intelligence in Geosciences, vol. 2, pp. 11–19, 2021.
  29. C. Song, T. Alkhalifah, and U. B. Waheed, “Solving the frequency-domain acoustic vti wave equation using physics-informed neural networks,” Geophysical Journal International, vol. 225, no. 2, pp. 846–859, 2021.
  30. M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, feb 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
  31. U. bin Waheed, E. Haghighat, T. Alkhalifah, C. Song, and Q. Hao, “Pinneik: Eikonal solution using physics-informed neural networks,” Computers & Geosciences, vol. 155, p. 104833, 2021.
  32. C. Song and T. A. Alkhalifah, “Wavefield reconstruction inversion via physics-informed neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2021.
  33. X. Huang and T. Alkhalifah, “Pinnup: Robust neural network wavefield solutions using frequency upscaling and neuron splitting,” Journal of Geophysical Research: Solid Earth, vol. 127, no. 6, p. e2021JB023703, 2022.
  34. M. Rasht-Behesht, C. Huber, K. Shukla, and G. E. Karniadakis, “Physics-informed neural networks (pinns) for wave propagation and full waveform inversions,” Journal of Geophysical Research: Solid Earth, vol. 127, no. 5, p. e2021JB023120, 2022.
  35. J. Sun, K. Innanen, T. Zhang, and D. Trad, “Implicit seismic full waveform inversion with deep neural representation,” Journal of Geophysical Research: Solid Earth, vol. 128, no. 3, p. e2022JB025964, 2023.
  36. J. Berg and K. Nyström, “A unified deep artificial neural network approach to partial differential equations in complex geometries,” Neurocomputing, vol. 317, pp. 28–41, nov 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S092523121830794X
  37. E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, and D. Mortari, “Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations,” Neurocomputing, vol. 457, pp. 334–356, oct 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231221009140
  38. X. Huang and T. Alkhalifah, “Single reference frequency loss for multi-frequency wavefield representation using physics-informed neural networks,” IEEE Geoscience and Remote Sensing Letters, 2022.
  39. S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality is all you need for training physics-informed neural networks,” arXiv preprint arXiv:2203.07404, 2022.
  40. B. Llanas and F. Sainz, “Constructive approximate interpolation by neural networks,” Journal of Computational and Applied Mathematics, vol. 188, no. 2, pp. 283–308, 2006.
  41. X. Huang, T. Alkhalifah, and C. Song, “A modified physics-informed neural network with positional encoding,” in First International Meeting for Applied Geoscience & Energy Expanded Abstracts.   Society of Exploration Geophysicists, sep 2021, pp. 2480–2484. [Online]. Available: https://library.seg.org/doi/10.1190/segam2021-3584127.1
  42. I. D. Longstaff and J. F. Cross, “A pattern recognition approach to understanding the multi-layer perception,” Pattern Recognition Letters, vol. 5, no. 5, pp. 315–319, 1987.
  43. F. Aminzadeh, N. Burkhard, J. Long, T. J. Kunz, and P. Duclos, “Three dimensional seg/eaeg models; an update,” Geophysics, vol. 15, pp. 131–134, 1996.
  44. D. Anikiev, J. Valenta, F. Staněk, and L. Eisner, “Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing,” Geophysical Journal International, vol. 198, no. 1, pp. 249–258, 2014.
  45. F. Staněk and L. Eisner, “Seismicity induced by hydraulic fracturing in shales: A bedding plane slip model,” Journal of Geophysical Research: Solid Earth, vol. 122, no. 10, pp. 7912–7926, 2017.
  46. H. Wang, T. Alkhalifah, U. B. Waheed, and C. Birnie, “Data-Driven Microseismic Event Localization: An Application to the Oklahoma Arkoma Basin Hydraulic Fracturing Data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, 2022.
  47. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol. 2.   Ieee, 2005, pp. 60–65.
  48. X. Huang, T. Alkhalifah, and F. Wang, “High-dimensional wavefield solutions using physics-informed neural networks with frequency-extension,” in 83rd EAGE Annual Conference & Exhibition, no. 1.   European Association of Geoscientists & Engineers, 2022, pp. 1–5.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.