MOPA: Modular Object Navigation with PointGoal Agents (2304.03696v3)
Abstract: We propose a simple but effective modular approach MOPA (Modular ObjectNav with PointGoal agents) to systematically investigate the inherent modularity of the object navigation task in Embodied AI. MOPA consists of four modules: (a) an object detection module trained to identify objects from RGB images, (b) a map building module to build a semantic map of the observed objects, (c) an exploration module enabling the agent to explore the environment, and (d) a navigation module to move to identified target objects. We show that we can effectively reuse a pretrained PointGoal agent as the navigation model instead of learning to navigate from scratch, thus saving time and compute. We also compare various exploration strategies for MOPA and find that a simple uniform strategy significantly outperforms more advanced exploration methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.