Papers
Topics
Authors
Recent
Search
2000 character limit reached

Beyond NeRF Underwater: Learning Neural Reflectance Fields for True Color Correction of Marine Imagery

Published 6 Apr 2023 in cs.CV and cs.RO | (2304.03384v2)

Abstract: Underwater imagery often exhibits distorted coloration as a result of light-water interactions, which complicates the study of benthic environments in marine biology and geography. In this research, we propose an algorithm to restore the true color (albedo) in underwater imagery by jointly learning the effects of the medium and neural scene representations. Our approach models water effects as a combination of light attenuation with distance and backscattered light. The proposed neural scene representation is based on a neural reflectance field model, which learns albedos, normals, and volume densities of the underwater environment. We introduce a logistic regression model to separate water from the scene and apply distinct light physics during training. Our method avoids the need to estimate complex backscatter effects in water by employing several approximations, enhancing sampling efficiency and numerical stability during training. The proposed technique integrates underwater light effects into a volume rendering framework with end-to-end differentiability. Experimental results on both synthetic and real-world data demonstrate that our method effectively restores true color from underwater imagery, outperforming existing approaches in terms of color consistency.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 29 likes about this paper.