Papers
Topics
Authors
Recent
2000 character limit reached

Deep learning neural network for approaching Schrödinger problems with arbitrary two-dimensional confinement

Published 3 Apr 2023 in physics.comp-ph and quant-ph | (2304.01325v2)

Abstract: This article presents an approach to the two-dimensional Schr\"odinger equation based on automatic learning methods with neural networks. It is intended to determine the ground state of a particle confined in any two-dimensional potential, starting from the knowledge of the solutions to a large number of arbitrary sample problems. A network architecture with two hidden layers is proposed to predict the wave function and energy of the ground state. Several accuracy indicators are proposed for validating the estimates provided by the neural network. The testing of the trained network is done by applying it to a large set of confinement potentials different from those used in the learning process. Some particular cases with symmetrical potentials are solved as concrete examples, and a good network prediction accuracy is found.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.