Papers
Topics
Authors
Recent
2000 character limit reached

Fast Point Cloud Generation with Diffusion Models in High Energy Physics (2304.01266v2)

Published 3 Apr 2023 in hep-ph and hep-ex

Abstract: Many particle physics datasets like those generated at colliders are described by continuous coordinates (in contrast to grid points like in an image), respect a number of symmetries (like permutation invariance), and have a stochastic dimensionality. For this reason, standard deep generative models that produce images or at least a fixed set of features are limiting. We introduce a new neural network simulation based on a diffusion model that addresses these limitations named Fast Point Cloud Diffusion (FPCD). We show that our approach can reproduce the complex properties of hadronic jets from proton-proton collisions with competitive precision to other recently proposed models. Additionally, we use a procedure called progressive distillation to accelerate the generation time of our method, which is typically a significant challenge for diffusion models despite their state-of-the-art precision.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.