Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Counting the minimum number of arcs in an oriented graph having weak diameter 2 (2304.00742v2)

Published 3 Apr 2023 in cs.DM and math.CO

Abstract: An oriented graph has weak diameter at most $d$ if every non-adjacent pair of vertices are connected by a directed $d$-path. The function $f_d(n)$ denotes the minimum number of arcs in an oriented graph on $n$ vertices having weak diameter $d$. Finding the exact value of $f_d(n)$ is a challenging problem even for $d = 2$. This function was introduced by Katona and Szemeredi (1967), and after that several attempts were made to find its exact value by Znam (1970), Dawes and Meijer (1987), Furedi, Horak, Pareek and Zhu (1998), and Kostochka, Luczak, Simonyi and Sopena (1999) through improving its best known bounds. In that process, it was proved that this function is asymptotically equal to $n\log_2 n$ and hence, is an asymptotically increasing function. However, the exact value and behaviour of this function was not known. In this article, we observe that the oriented graphs with weak diameter at most $2$ are precisely the absolute oriented cliques, that is, analogues of cliques for oriented graphs in the context of oriented coloring. Through studying arc-minimal absolute oriented cliques we prove that $f_2(n)$ is a strictly increasing function. Furthermore, we improve the best known upper bound of $f_2(n)$ and conjecture that our upper bound is tight. This improvement of the upper bound improves known bounds involving the oriented achromatic number.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.