Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Synge's world function applied to causal diamonds and causal sets (2304.00088v1)

Published 31 Mar 2023 in gr-qc and hep-th

Abstract: One of the major tasks in discrete theories of gravity, including causal set theory, is to discover how the combinatorics of the underlying discrete structure recovers various geometric aspects of the emergent spacetime manifold. In this paper, I develop a new covariant approach to connect the combinatorics of a Poisson sprinkled causal set to the geometry of spacetime, using the so-called Synge's world function. The Poisson sprinkling depends crucially on the volume of a causal interval. I expand this volume, in 2 dimensions, in powers of Synge's world function and Ricci scalar. Other geometric properties of Synge's world function are well-known, making it easy to connect to the curvature of spacetime. I use this connection to provide a straightforward proof that the BDG action of causal sets gives the Einstein-Hilbert action in the continuum limit, without having to work in a particular coordinate system like Riemann normal coordinates.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com