Emus live on the Gross-Neveu-Yukawa archipelago
Abstract: It is expected that the Gross-Neveu-Yukawa (GNY) chiral Ising transition of $N$ Majorana (or $N_f=N/4$ four-component Dirac) fermions coupled with scalar field in (2+1)D will be the first fermionic quantum critical point that various methods such as conformal bootstrap [1], perturbative renormalization group [2] and quantum Monte Carlo (QMC) simulations [3], would yield the converged critical exponents -- serving the same textbook role as the Ising and $O(N)$ models in the statistical and quantum phase transition. However, such expectation has not been fully realized from the lattice QMC simulations due to the obstacles introduced by the UV finite size effect. In this work, by means of the elective-momentum ultra-size (EMUS) QMC method [4], we compute the critical exponents of the GNY $N=8$ chiral Ising transition on a 2D $\pi$-flux fermion lattice model between Dirac semimetal and quantum spin Hall insulator phases [3, 5]. With the matching of fermionic and bosonic momentum transfer and collective update in momentum space, our QMC results provide the fully consistent exponents with those obtained from the bootstrap and perturbative approaches. In this way, the Emus now live happily on the $N=8$ island and could explore the Gross-Neveu-Yukawa archipelago [1] with ease.
- D. F. Litim and D. Zappalà, Phys. Rev. D 83, 085009 (2011).
- M. V. Kompaniets and E. Panzer, Phys. Rev. D 96, 036016 (2017).
- M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).
- J. Gracey, Nuclear Physics B 341, 403 (1990).
- J. A. Gracey, T. Luthe, and Y. Schröder, Phys. Rev. D 94, 125028 (2016).
- M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000).
- A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
- I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).
- I. F. Herbut, V. Juričić, and B. Roy, Phys. Rev. B 79, 085116 (2009a).
- I. F. Herbut, V. Juričić, and O. Vafek, Phys. Rev. B 80, 075432 (2009b).
- J.-X. Yin, B. Lian, and M. Z. Hasan, Nature 612, 647 (2022).
- S. Chandrasekharan and A. Li, Phys. Rev. D 88, 021701 (2013).
- B. Ihrig, L. N. Mihaila, and M. M. Scherer, Phys. Rev. B 98, 125109 (2018).
- T. C. Lang and A. M. Läuchli, Phys. Rev. Lett. 123, 137602 (2019).
- H. Nielsen and M. Ninomiya, Nuclear Physics B 185, 20 (1981a).
- H. Nielsen and M. Ninomiya, Nuclear Physics B 193, 173 (1981b).
- Z. Wang, F. Assaad, and M. Ulybyshev, arXiv e-prints , arXiv:2211.02960 (2022), arXiv:2211.02960 [cond-mat.str-el] .
- In this Supplementary Material, we discuss in detail the concept and implementation of the elective-momentum ultra-size (EMUS)-QMC method. We also provide details on how to perform the stochastic data collapse to unbiasedly extract the critical exponents .
- T. Sato, M. Hohenadler, and F. F. Assaad, Phys. Rev. Lett. 119, 197203 (2017).
- Y. Ouyang and X. Y. Xu, Phys. Rev. B 104, L241104 (2021).
- Y. Da Liao, Z. Y. Meng, and X. Y. Xu, Phys. Rev. Lett. 123, 157601 (2019).
- G. Pan, W. Jiang, and Z. Y. Meng, Chinese Physics B 31, 127101 (2022b).
- X. Y. Xu and T. Grover, Phys. Rev. Lett. 126, 217002 (2021).
- J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
- L. Wang, K. S. D. Beach, and A. W. Sandvik, Phys. Rev. B 73, 014431 (2006).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.