Diatomic molecules of alkali-metal and alkaline-earth-metal atoms: interaction potentials, dipole moments, and polarizabilities (2303.17527v2)
Abstract: Ultracold diatomic molecules find application in quantum studies ranging from controlled chemistry and precision measurement physics to quantum many-body simulation and potentially quantum computing. Accurate knowledge of molecular properties is required to guide and explain ongoing experiments. Here, in an extensive and comparative study, we theoretically investigate the electronic properties of the ground-state diatomic molecules composed of alkali-metal (Li, Na, K, Rb, Cs, Fr) and alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atoms. We study 78 hetero- and homonuclear diatomic combinations, including 21 alkali-metal molecules in the $X1\Sigma+$ and $a3\Sigma+$ electronic states, 36 alkali-metal--alkaline-earth-metal molecules in the $X2\Sigma+$ electronic state, and 21 alkaline-earth-metal molecules in the $X1\Sigma+$ electronic state. We calculate potential energy curves, permanent electric dipole moments, and polarizabilities using the hierarchy of coupled cluster methods upto CCSDTQ with large Gaussian basis sets and small-core relativistic energy-consistent pseudopotentials. We collect and analyze corresponding spectroscopic constants. We estimate computational uncertainties and compare the present values with previous experimental and theoretical data to establish a new theoretical benchmark. The presented results should be useful for further application of the studied molecules in modern ultracold physics and chemistry experiments.
- G. Quemener and P. S. Julienne, Chem. Rev. 112, 4949 (2012).
- D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
- B. Gadway and B. Yan, J. Phys. B: At. Mol. Opt. Phys. 49, 152002 (2016).
- Nat. Phys. 19, 1579 (2023).
- A. M. Kaufman and K.-K. Ni, Nat. Phys. 17, 1324 (2021).
- M. M. Hessel and C. Vidal, J. Chem. Phys. 70, 4439 (1979).
- X. Xie and R. Field, J. Chem. Phys. 83, 6193 (1985).
- A. A. Zavitsas, J. Mol. Spectrosc. 221, 67 (2003).
- J. A. Coxon and T. C. Melville, J. Mol. Spectrosc. 235, 235 (2006).
- N. S. Dattani and R. J. Le Roy, J. Mol. Spectrosc. 268, 199 (2011).
- A. Roach, J. Mol. Spectrosc. 42, 27 (1972).
- M. L. Olson and D. D. Konowalow, Chem. Phys. 21, 393 (1977).
- D. D. Konowalow and M. L. Olson, J. Chem. Phys. 71, 450 (1979).
- D. Maynau and J. Daudey, Chem. Phys. Lett. 81, 273 (1981).
- D. Davies and G. Jones, Chem. Phys. Lett. 81, 279 (1981).
- W. Müller and W. Meyer, J. Chem. Phys. 80, 3311 (1984).
- D. D. Konowalow and J. L. Fish, Chem. Phys. 84, 463 (1984).
- U. Kaldor, Chem. Phys. 140, 1 (1990).
- R. Poteau and F. Spiegelmann, J. Mol. Spectrosc. 171, 299 (1995).
- P. Jasik and J. E. Sienkiewicz, Chem. Phys. 323, 563 (2006).
- M. Musiał and S. A. Kucharski, J. Chem. Theory Comput. 10, 1200 (2014).
- S. Nasiri and M. Zahedi, Chem. Phys. Lett. 634, 101 (2015).
- M. Barysz, J. Chem. Theory Comput. 12, 1614 (2016).
- H. Nakatsuji and H. Nakashima, J. Chem. Phys. 157, 094109 (2022).
- C. Fellows, J. Chem. Phys. 94, 5855 (1991).
- M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005).
- N. Mabrouk and H. Berriche, J. Phys. B: At. Mol. Opt. Phys 41, 155101 (2008).
- G. Skrzyński and M. Musial, Molecules 28 (2023), 10.3390/molecules28227645.
- I. Jendoubi, Arab. J. Sci. Eng 47, 971 (2022).
- M. Shundalau and P. Lamberti, J. Quant. Spectrosc. Radiat. Transf. 296, 108467 (2023).
- P. Kusch and M. M. Hessel, J. Chem. Phys. 68, 2591 (1978).
- J. B. Bauer and J. P. Toennies, J. Chem. Phys. 150, 144310 (2019).
- A. Valance and Nguyen Tuan Q., Phys. Lett. A 82, 116 (1981).
- A. Valance and Q. N. Tuan, J. Phys. B: At. Mol. Opt. Phys. 15, 17 (1982).
- G. Jeung, J. Phys. B: At. Mol. Opt. Phys. 16, 4289 (1983).
- E. J. Breford and F. Engelke, J. Chem. Phys. 71, 1994 (1979).
- P. Kowalczyk, J. Chem. Phys. 91, 2779 (1989).
- A. Krou-Adohi and S. Giraud-Cotton, J. Mol. Spectrosc. 190, 171 (1998).
- R. Janoschek and H. Lee, Chem. Phys. Lett. 58, 47 (1978).
- S. Magnier and P. Millié, Phys. Rev. A 54, 204 (1996).
- M. Aymar and O. Dulieu, Mol. Phys. 105, 1733 (2007).
- A. R. Allouche and M. Aubert-Frécon, J. Chem. Phys. 135, 024309 (2011).
- M. E. Segovia and O. N. Ventura, Mol. Phys. 117, 813 (2019).
- N. Takahashi and H. Katô, J. Chem. Phys. 75, 4350 (1981).
- W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 114, 10811 (2001).
- M. Korek and O. Fawwaz, Int. J. Quantum Chem. 109, 938 (2009).
- N. Mabrouk and H. Berriche, J. Phys. Chem. A 118, 8828 (2014).
- M. Schwarzer and J. P. Toennies, J. Chem. Phys. 154, 154304 (2021).
- C. Amiot, J. Mol. Spectrosc. 147, 370 (1991).
- A. A. Zavitsas, J. Chem. Phys. 124, 144318 (2006).
- G. H. Jeung and A. J. Ross, J. Phys. B: At. Mol. Opt. Phys. , 1473 (1988).
- M. Krauss and W. Stevens, J. Chem. Phys. 93, 4236 (1990).
- E. Ilyabaev and U. Kaldor, J. Chem. Phys. 98, 7126 (1993).
- C. Amiot and J. Vergés, J. Chem. Phys. 112, 7068 (2000).
- W. C. Stwalley, J. Chem. Phys. 122, 084319 (2005).
- M. Schwarzer and J. P. Toennies, J. Chem. Phys. 153, 114303 (2020).
- P. Soldán and V. Spirko, J. Chem. Phys. 127, 121101 (2007).
- S. Jellali and H. Habli, J. Quant. Spectrosc. Radiat. Transf. 276, 107897 (2021).
- S. Kotochigova and E. Tiesinga, J. Chem. Phys. 123, 174304 (2005).
- D. Kotnik-Karuza and C. Vidal, Chem. Phys. 40, 25 (1979).
- E. Breford and F. Engelke, Chem. Phys. Lett. 75, 132 (1980).
- C. Amiot, J. Chem. Phys. 93, 8591 (1990).
- A.-R. Allouche and M. Aubert-Frécon, J. Chem. Phys. 136, 114302 (2012).
- J. G. Hill and K. A. Peterson, J. Chem. Phys. 147, 244106 (2017).
- H. Kato and H. Kobayashi, J. Chem. Phys. 79, 123 (1983).
- P. Kusch and M. Hessel, J. Mol. Spectrosc. 32, 181 (1969).
- C. Amiot and O. Dulieu, J. Chem. Phys. 117, 5155 (2002).
- J. A. Coxon and P. G. Hajigeorgiou, J. Chem. Phys. 132, 094105 (2010).
- B. C. Laskowski and S. R. Langhoff, Chem. Phys. Lett. 92, 49 (1982).
- S. Jellali and H. Habli, J. Phys. Chem. A 126, 3613 (2022).
- R. O. Jones, J. Chem. Phys. 72, 3197 (1980).
- J. Koput, J. Comp. Chem. 43, 491 (2022).
- K. Berry and M. Duncan, Chem. Phys. Lett. 279, 44 (1997).
- L. Augustovičová and P. Soldán, J. Chem. Phys. 136, 084311 (2012).
- Y. Gao and T. Gao, Mol. Phys. 112, 3015 (2014).
- D. Benard and H. Michels, Chem. Phys. Lett. 86, 449 (1982).
- S. O. Julia Gerschmann, Erik Schwanke and E. Tiemann, Mol. Phys. 121, e2122886 (2023).
- A. Allouche and M. Aubert-Frécon, Chem. Phys. Lett. 222, 524 (1994a).
- A.-R. Allouche and M. Aubert-Frécon, J. Chem. Phys. 100, 938 (1994b).
- T. Fleig and D. DeMille, New J. Phys. 23, 113039 (2021).
- V. Bondybey, Chem. Phys. Lett. 109, 436 (1984).
- V. Špirko, J. Mol. Spectrosc. 235, 268 (2006).
- B. Liu and A. D. McLean, J. Chem. Phys. 72, 3418 (1980).
- R. A. Chiles and C. E. Dykstra, J. Chem. Phys. 74, 4544 (1981).
- I. Røeggen and L. Veseth, Int. J. Quantum Chem. 101, 201 (2005).
- Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 5121 (2006).
- J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011).
- G.-H. Jeung, Comptes rendus. Chimie 15, 225 (2012).
- A. Kalemos, J. Chem. Phys. 145, 214302 (2016).
- L. T. Xu and T. H. Dunning Jr, J. Chem. Phys. 152, 214111 (2020).
- R. A. Chiles and C. E. Dykstra, Chem. Phys. Lett. 85, 447 (1982).
- A. C. Borin and A. L. G. Rodrigues, Chem. Phys. Lett. 372, 698 (2003).
- I. S. Kerkines and C. A. Nicolaides, J. Chem. Phys. 137, 124309 (2012).
- W. Balfour and A. Douglas, Can. J. Phys. 48, 901 (1970).
- C. Vidal and H. Scheingraber, J. Mol. Spectrosc. 65, 46 (1977).
- K. G. Dyall and A. D. McLean, J. Chem. Phys. 97, 8424 (1992).
- W. J. Balfour and R. F. Whitlock, Can. J. Phys. 53, 472 (1975).
- J. C. Wyss, J. Chem. Phys. 71, 2949 (1979).
- C. Vidal, J. Chem. Phys. 72, 1864 (1980).
- R. J. L. Roy and R. D. Henderson, Mol. Phys. 105, 663 (2007).
- D.-D. Yang and F. Wang, Theor. Chem. Acc. 131, 1117 (2012).
- T. Bergeman and P. Liao, J. Chem. Phys. 72, 886 (1980).
- S. Kotochigova, J. Chem. Phys. 128, 024303 (2008).
- A. Mitin, Russ. J. Phys. Chem. A 83, 1160 (2009).
- “See Supplemental Material at https://arxiv.org/src/2303.17527/anc and http://link.aps.org/supplemental/XXXX for the calculated potential energy curves, dipole moments, and polarizabilities in a numerical form.” .
- S. Tohme and M. Korek, Chem. Phys. 410, 37 (2013).
- S. N. Tohme and M. Korek, Chem. Phys. Lett. 638, 216 (2015).
- S. N. Tohme and M. Korek, Comput. Theor. Chem. 1078, 65 (2016).
- D. N. Meniailava and M. B. Shundalau, Comput. Theor. Chem 1111, 20 (2017).
- M. Shundalau and A. Minko, Comput. Theor. Chem 1103, 11 (2017).
- K. Zaremba-Kopczyk and M. Tomza, Phys. Rev. A 104, 042816 (2021).
- M. Śmiałkowski and M. Tomza, Phys. Rev. A 103, 022802 (2021).
- M. Śmiałkowski and M. Tomza, Phys. Rev. A 101, 012501 (2020).
- R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).
- F.-M. Tao and Y.-K. Pan, J. Chem. Phys. 97, 4989 (1992).
- S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
- M. Dolg and X. Cao, Chem. Rev. 112, 403 (2012).
- P. J. Dagdigian and L. Wharton, J. Chem. Phys. 57, 1487 (1972).
- F.-M. Tao, Int. Rev. Phys. Chem. 20, 617 (2001).
- U. Hohm, J. Mol. Struct. 1054-1055, 282 (2013).
- W. Müller and W. Meyer, J. Chem. Phys. 85, 953 (1986).
- M. Urban and A. J. Sadlej, J. Chem. Phys. 103, 9692 (1995).
- M. Rérat and B. Bussery-Honvault, Mol. Phys. 101, 373 (2003).
- P. S. Żuchowski and J. M. Hutson, Phys. Rev. A 81, 060703 (2010).
- H. Ladjimi and M. Tomza, Phys. Rev. A 108, L021302 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.