2000 character limit reached
Improving the Diproche CNL through Autoformalization via Large Language Models (2303.17513v3)
Published 12 Mar 2023 in cs.CL and cs.LO
Abstract: The Diproche system is an automated proof checker for texts written in a controlled fragment of German, designed for didactical applications in classes introducing students to proofs for the first time. The first version of the system used a controlled natural language for which a Prolog formalization routine was written. In this paper, we explore the possibility of prompting LLMs for autoformalization in the context of Diproche, with encouraging first results.
- ArXiv, 10.48550/arXiv.2302.12433. arXiv:https://arxiv.org/abs/abs/2302.12433.
- Christoph Benzmüller, Florian Rabe & Geoff Sutcliffe (2008): THF0 – The Core of the TPTP Language for Higher-Order Logic. In A. Armando, P. Baumgartner & G. Dowek, editors: Automated Reasoning. IJCAR 2008, 5195, pp. 491–506, 10.1007/978-3-540-71070-7_41.
- Merlin Carl (2020): Number Theory and Axiomatic Geometry in the Diproche System. Electronic Proceedings in Theoretical Computer Science 328, pp. 56–78, 10.4204/EPTCS.328.4.
- Merlin Carl & Regula Krapf (2020): Diproche - ein automatisierter Tutor für den Einstieg ins Beweisen. In: Digitale Kompetenzen und Curriculare Konsequenzen, pp. 43–56.
- Merlin Carl, Hinrich Lorenzen & MIchael Schmitz (2022): Natural Language Proof Checking in Introduction to Proof Classes – First Experiences with Diproche. Electronic Proceedings in Theoretical Computer Science 354, pp. 59–70, 10.4204/EPTCS.354.5.
- Lingjiao Chen, Matei Zaharia & James Y. Zou (2023): How is ChatGPT’s behavior changing over time? ArXiv abs/2307.09009, 10.48550/arXiv.2307.09009. Available at https://api.semanticscholar.org/CorpusID:259951081.
- Marcos Cramer (2013): Proof-checking mathematical texts in controlled natural language. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn”.
- In: Controlled Natural Language. CNL 2009, 5972, pp. 170–186, 10.1007/978-3-642-14418-9_11.
- Mohan Ganesalingam (2013): The language of mathematics. Springer Berlin Heidelberg, 10.1007/978-3-642-37012-0.
- Peter Koepke & Bernhard Schröder (2003): ProofML - eine Annotationssprache für natürliche Beweise. LDV Forum 18, pp. 428–441, 10.21248/jlcl.18.2003.48. Available at https://api.semanticscholar.org/CorpusID:30895733.
- In: CPP 2020: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 85–98, 10.1145/3372885.3373827.
- In: 36th Conference on Neural Information Processing Systems (NeurIPS), 10.48550/arXiv.2205.12615.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.