Using the basin entropy to explore bifurcations (2303.16996v1)
Abstract: Bifurcation theory is the usual analytic approach to study the parameter space of a dynamical system. Despite the great power of prediction of these techniques, fundamental limitations appear during the study of a given problem. Nonlinear dynamical systems often hide their secrets and the ultimate resource is the numerical simulations of the equations. This paper presents a method to explore bifurcations by using the basin entropy. This measure of the unpredictability can detect transformations of phase space structures as a parameter evolves. We present several examples where the bifurcations in the parameter space have a quantitative effect on the basin entropy. Moreover, some transformations, such as the basin boundary metamorphoses, can be identified with the basin entropy but are not reflected in the bifurcation diagram. The correct interpretation of the basin entropy plotted as a parameter extends the numerical exploration of dynamical systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.