Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-scale CLEAN in hard X-ray solar imaging (2303.16272v1)

Published 28 Mar 2023 in astro-ph.IM, astro-ph.SR, cs.NA, and math.NA

Abstract: Multi-scale deconvolution is an ill-posed inverse problem in imaging, with applications ranging from microscopy, through medical imaging, to astronomical remote sensing. In the case of high-energy space telescopes, multi-scale deconvolution algorithms need to account for the peculiar property of native measurements, which are sparse samples of the Fourier transform of the incoming radiation. The present paper proposes a multi-scale version of CLEAN, which is the most popular iterative deconvolution method in Fourier space imaging. Using synthetic data generated according to a simulated but realistic source configuration, we show that this multi-scale version of CLEAN performs better than the original one in terms of accuracy, photometry, and regularization. Further, the application to a data set measured by the NASA Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) shows the ability of multi-scale CLEAN to reconstruct rather complex topographies, characteristic of a real flaring event.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.