Papers
Topics
Authors
Recent
2000 character limit reached

Field theory in Rindler frame and more on the correspondence with thermal field theory formalisms (2303.16022v2)

Published 28 Mar 2023 in hep-th, gr-qc, and quant-ph

Abstract: Considering two accelerated observers with same acceleration in two timelike wedges of Rindler frame we calculate the Feynman-{\it like} propagators for a real scalar field in a thermal bath with respect to the Minkowski vacuum. Only the same wedge correlators are symmetric under the exchange of the {\it real} thermal bath and Unruh thermal bath, while the cross-wedge ones are not. Interestingly, they contain a cross term which is a collective effects of acceleration and thermal nature of field. Particularly the zero temperature description along with {\it no analytic continuation} between coordinates in right and left Rindler wedges, as expected, corresponds to usual thermofield-double formalism. However, unlike in later formulation, the two fields are now parts of the original system. Moreover it bears the features of a spacial case of closed-time formalism (CTP) where the Keldysh contour is along the increasing Rindler time in the respective Rindler wedges. Interestingly, we observe a new feature that the analytic continuation between the wedges provides the two more spacial cases of CTP. Hence Rindler-frame-field theory seems to be a viable candidate to deal thermal theory of fields and may illuminate the search for a bridge between the usual existing formalisms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. An Annotated Reprint Collection, Elsevier, 2003.
  2. Springer, 2016.
  3. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys., vol. 2, pp. 505–532, 1998.
  4. A. Albrecht and R. H. Brandenberger, “Realization of new inflation,” Phys. Rev. D, vol. 31, pp. 1225–1231, Mar 1985.
  5. R. H. Brandenberger, “Quantum field theory methods and inflationary universe models,” Rev. Mod. Phys., vol. 57, pp. 1–60, Jan 1985.
  6. U. Kraemmer and A. Rebhan, “Self-consistent cosmological perturbations from thermal field theory,” Phys. Rev. Lett., vol. 67, pp. 793–796, Aug 1991.
  7. A. Berera, “Thermal properties of an inflationary universe,” Phys. Rev. D, vol. 54, pp. 2519–2534, Aug 1996.
  8. A. Berera, “Warm inflation in the adiabatic regime — a model, an existence proof for inflationary dynamics in quantum field theory,” Nuclear Physics B, vol. 585, no. 3, pp. 666–714, 2000.
  9. T. Matsubara, “A New approach to quantum statistical mechanics,” Prog. Theor. Phys., vol. 14, pp. 351–378, 1955.
  10. A. Das, Finite Temperature Field Theory. World Scientific, 1997.
  11. W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to Build the Thermofield Double State,” JHEP, vol. 02, p. 058, 2019.
  12. A. Azizi, “Kappa vacua: A generalization of the thermofield double state,” Jan 2023.
  13. N. P. Landsman and C. G. van Weert, “Real- and imaginary-time field theory at finite temperature and density,” Phys. Rep., vol. 145, pp. 141–249, Jan. 1987.
  14. T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP, vol. 05, p. 014, 2013.
  15. S. Chapman, J. Eisert, L. Hackl, M. P. Heller, R. Jefferson, H. Marrochio, and R. C. Myers, “Complexity and entanglement for thermofield double states,” SciPost Phys., vol. 6, no. 3, p. 034, 2019.
  16. C.-J. Lin, Z. Li, and T. H. Hsieh, “Entanglement renormalization of thermofield double states,” Phys. Rev. Lett., vol. 127, p. 080602, Aug 2021.
  17. P. Dadras, “Disentangling the thermofield-double state,” JHEP, vol. 01, p. 075, 2022.
  18. S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP, vol. 03, p. 067, 2014.
  19. S. H. Shenker and D. Stanford, “Multiple Shocks,” JHEP, vol. 12, p. 046, 2014.
  20. D. A. Roberts, D. Stanford, and L. Susskind, “Localized shocks,” JHEP, vol. 03, p. 051, 2015.
  21. A. del Campo, J. Molina-Vilaplana, L. F. Santos, and J. Sonner, “Decay of a Thermofield-Double State in Chaotic Quantum Systems,” Eur. Phys. J. ST, vol. 227, no. 3-4, pp. 247–258, 2018.
  22. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, and J. Sully, “An Apologia for Firewalls,” JHEP, vol. 09, p. 018, 2013.
  23. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys., vol. 61, pp. 781–811, 2013.
  24. K. Papadodimas and S. Raju, “An Infalling Observer in AdS/CFT,” JHEP, vol. 10, p. 212, 2013.
  25. L. Susskind, “ER=EPR, GHZ, and the consistency of quantum measurements,” Fortsch. Phys., vol. 64, pp. 72–83, 2016.
  26. M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav., vol. 42, pp. 2323–2329, 2010.
  27. J. Schwinger, “Brownian motion of a quantum oscillator,” Journal of Mathematical Physics, vol. 2, no. 3, pp. 407–432, 1961.
  28. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz., vol. 47, pp. 1515–1527, 1964.
  29. W. Unruh, “Notes on black hole evaporation,” Phys.Rev., vol. D14, p. 870, 1976.
  30. W. G. Unruh and R. M. Wald, “What happens when an accelerating observer detects a Rindler particle,” Phys. Rev. D, vol. 29, pp. 1047–1056, 1984.
  31. N. D. Birrell and P. C. W. Davies, Quantum fields in curved space. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984.
  32. L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, “The Unruh effect and its applications,” Rev. Mod. Phys., vol. 80, pp. 787–838, 2008.
  33. S. Kolekar and T. Padmanabhan, “Quantum field theory in the Rindler-Rindler spacetime,” Phys. Rev. D, vol. 89, no. 6, p. 064055, 2014.
  34. S. Kolekar and T. Padmanabhan, “Indistinguishability of thermal and quantum fluctuations,” Class. Quant. Grav., vol. 32, no. 20, p. 202001, 2015.
  35. S. Fulling and S. Ruijsenaars, “Temperature, periodicity and horizons,” Physics Reports, vol. 152, no. 3, pp. 135 – 176, 1987.
  36. M. Saeki, “Non-Equilibrium Thermo-Field Dynamics for a Fourth-Order Hamiltonian,” Progress of Theoretical Physics, vol. 124, pp. 95–123, 07 2010.
  37. S. Carroll, Spacetime and geometry. An introduction to general relativity. AW, 2004.
  38. D. Barman, S. Barman, and B. R. Majhi, “Role of thermal field in entanglement harvesting between two accelerated Unruh-DeWitt detectors,” JHEP, vol. 07, p. 124, 2021.
  39. Graduate Texts in Physics, Springer, 2016.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.