Field theory in Rindler frame and more on the correspondence with thermal field theory formalisms (2303.16022v2)
Abstract: Considering two accelerated observers with same acceleration in two timelike wedges of Rindler frame we calculate the Feynman-{\it like} propagators for a real scalar field in a thermal bath with respect to the Minkowski vacuum. Only the same wedge correlators are symmetric under the exchange of the {\it real} thermal bath and Unruh thermal bath, while the cross-wedge ones are not. Interestingly, they contain a cross term which is a collective effects of acceleration and thermal nature of field. Particularly the zero temperature description along with {\it no analytic continuation} between coordinates in right and left Rindler wedges, as expected, corresponds to usual thermofield-double formalism. However, unlike in later formulation, the two fields are now parts of the original system. Moreover it bears the features of a spacial case of closed-time formalism (CTP) where the Keldysh contour is along the increasing Rindler time in the respective Rindler wedges. Interestingly, we observe a new feature that the analytic continuation between the wedges provides the two more spacial cases of CTP. Hence Rindler-frame-field theory seems to be a viable candidate to deal thermal theory of fields and may illuminate the search for a bridge between the usual existing formalisms.
- An Annotated Reprint Collection, Elsevier, 2003.
- Springer, 2016.
- E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys., vol. 2, pp. 505–532, 1998.
- A. Albrecht and R. H. Brandenberger, “Realization of new inflation,” Phys. Rev. D, vol. 31, pp. 1225–1231, Mar 1985.
- R. H. Brandenberger, “Quantum field theory methods and inflationary universe models,” Rev. Mod. Phys., vol. 57, pp. 1–60, Jan 1985.
- U. Kraemmer and A. Rebhan, “Self-consistent cosmological perturbations from thermal field theory,” Phys. Rev. Lett., vol. 67, pp. 793–796, Aug 1991.
- A. Berera, “Thermal properties of an inflationary universe,” Phys. Rev. D, vol. 54, pp. 2519–2534, Aug 1996.
- A. Berera, “Warm inflation in the adiabatic regime — a model, an existence proof for inflationary dynamics in quantum field theory,” Nuclear Physics B, vol. 585, no. 3, pp. 666–714, 2000.
- T. Matsubara, “A New approach to quantum statistical mechanics,” Prog. Theor. Phys., vol. 14, pp. 351–378, 1955.
- A. Das, Finite Temperature Field Theory. World Scientific, 1997.
- W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to Build the Thermofield Double State,” JHEP, vol. 02, p. 058, 2019.
- A. Azizi, “Kappa vacua: A generalization of the thermofield double state,” Jan 2023.
- N. P. Landsman and C. G. van Weert, “Real- and imaginary-time field theory at finite temperature and density,” Phys. Rep., vol. 145, pp. 141–249, Jan. 1987.
- T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP, vol. 05, p. 014, 2013.
- S. Chapman, J. Eisert, L. Hackl, M. P. Heller, R. Jefferson, H. Marrochio, and R. C. Myers, “Complexity and entanglement for thermofield double states,” SciPost Phys., vol. 6, no. 3, p. 034, 2019.
- C.-J. Lin, Z. Li, and T. H. Hsieh, “Entanglement renormalization of thermofield double states,” Phys. Rev. Lett., vol. 127, p. 080602, Aug 2021.
- P. Dadras, “Disentangling the thermofield-double state,” JHEP, vol. 01, p. 075, 2022.
- S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP, vol. 03, p. 067, 2014.
- S. H. Shenker and D. Stanford, “Multiple Shocks,” JHEP, vol. 12, p. 046, 2014.
- D. A. Roberts, D. Stanford, and L. Susskind, “Localized shocks,” JHEP, vol. 03, p. 051, 2015.
- A. del Campo, J. Molina-Vilaplana, L. F. Santos, and J. Sonner, “Decay of a Thermofield-Double State in Chaotic Quantum Systems,” Eur. Phys. J. ST, vol. 227, no. 3-4, pp. 247–258, 2018.
- A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, and J. Sully, “An Apologia for Firewalls,” JHEP, vol. 09, p. 018, 2013.
- J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys., vol. 61, pp. 781–811, 2013.
- K. Papadodimas and S. Raju, “An Infalling Observer in AdS/CFT,” JHEP, vol. 10, p. 212, 2013.
- L. Susskind, “ER=EPR, GHZ, and the consistency of quantum measurements,” Fortsch. Phys., vol. 64, pp. 72–83, 2016.
- M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav., vol. 42, pp. 2323–2329, 2010.
- J. Schwinger, “Brownian motion of a quantum oscillator,” Journal of Mathematical Physics, vol. 2, no. 3, pp. 407–432, 1961.
- L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz., vol. 47, pp. 1515–1527, 1964.
- W. Unruh, “Notes on black hole evaporation,” Phys.Rev., vol. D14, p. 870, 1976.
- W. G. Unruh and R. M. Wald, “What happens when an accelerating observer detects a Rindler particle,” Phys. Rev. D, vol. 29, pp. 1047–1056, 1984.
- N. D. Birrell and P. C. W. Davies, Quantum fields in curved space. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984.
- L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, “The Unruh effect and its applications,” Rev. Mod. Phys., vol. 80, pp. 787–838, 2008.
- S. Kolekar and T. Padmanabhan, “Quantum field theory in the Rindler-Rindler spacetime,” Phys. Rev. D, vol. 89, no. 6, p. 064055, 2014.
- S. Kolekar and T. Padmanabhan, “Indistinguishability of thermal and quantum fluctuations,” Class. Quant. Grav., vol. 32, no. 20, p. 202001, 2015.
- S. Fulling and S. Ruijsenaars, “Temperature, periodicity and horizons,” Physics Reports, vol. 152, no. 3, pp. 135 – 176, 1987.
- M. Saeki, “Non-Equilibrium Thermo-Field Dynamics for a Fourth-Order Hamiltonian,” Progress of Theoretical Physics, vol. 124, pp. 95–123, 07 2010.
- S. Carroll, Spacetime and geometry. An introduction to general relativity. AW, 2004.
- D. Barman, S. Barman, and B. R. Majhi, “Role of thermal field in entanglement harvesting between two accelerated Unruh-DeWitt detectors,” JHEP, vol. 07, p. 124, 2021.
- Graduate Texts in Physics, Springer, 2016.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.