Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mean-variance hybrid portfolio optimization with quantile-based risk measure (2303.15830v2)

Published 28 Mar 2023 in q-fin.PM and q-fin.MF

Abstract: This paper addresses the importance of incorporating various risk measures in portfolio management and proposes a dynamic hybrid portfolio optimization model that combines the spectral risk measure and the Value-at-Risk in the mean-variance formulation. By utilizing the quantile optimization technique and martingale representation, we offer a solution framework for these issues and also develop a closed-form portfolio policy when all market parameters are deterministic. Our hybrid model outperforms the classical continuous-time mean-variance portfolio policy by allocating a higher position of the risky asset in favorable market states and a less risky asset in unfavorable market states. This desirable property leads to promising numerical experiment results, including improved Sortino ratio and reduced downside risk compared to the benchmark models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.