Consequences of Vopěnka's Principle over weak set theories (2303.15045v1)
Abstract: It is shown that Vop\v{e}nka's Principle (VP) can restore almost the entire ZF over a weak fragment of it. Namely, if EST is the theory consisting of the axioms of Extensionality, Empty Set, Pairing, Union, Cartesian Product, $\Delta_0$-Separation and Induction along $\omega$, then ${\rm EST+VP}$ proves the axioms of Infinity, Replacement (thus also Separation) and Powerset. The result was motivated by previous results in \cite{Tz14}, as well as by H. Friedman's \cite{Fr05}, where a distinction is made among various forms of VP. As a corollary, ${\rm EST}+$Foundation$+{\rm VP}$=${\rm ZF+VP}$, and ${\rm EST}+$Foundation$+{\rm AC+VP}={\rm ZFC+VP}$. Also it is shown that the Foundation axiom is independent from ZF--{Foundation}+${\rm VP}$. It is open whether the Axiom of Choice is independent from ${\rm ZF+VP}$. A very weak form of choice follows from VP and some similar other forms of choice are introduced.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.