Papers
Topics
Authors
Recent
Search
2000 character limit reached

Borrowing Human Senses: Comment-Aware Self-Training for Social Media Multimodal Classification

Published 27 Mar 2023 in cs.CL, cs.AI, cs.IR, and cs.MM | (2303.15016v1)

Abstract: Social media is daily creating massive multimedia content with paired image and text, presenting the pressing need to automate the vision and language understanding for various multimodal classification tasks. Compared to the commonly researched visual-lingual data, social media posts tend to exhibit more implicit image-text relations. To better glue the cross-modal semantics therein, we capture hinting features from user comments, which are retrieved via jointly leveraging visual and lingual similarity. Afterwards, the classification tasks are explored via self-training in a teacher-student framework, motivated by the usually limited labeled data scales in existing benchmarks. Substantial experiments are conducted on four multimodal social media benchmarks for image text relation classification, sarcasm detection, sentiment classification, and hate speech detection. The results show that our method further advances the performance of previous state-of-the-art models, which do not employ comment modeling or self-training.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.