Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Augmentation: Dropout as Augmentation for Self-Supervised Learning (2303.14537v5)

Published 25 Mar 2023 in cs.LG, cs.CL, and cs.CV

Abstract: Despite dropout's ubiquity in machine learning, its effectiveness as a form of data augmentation remains under-explored. We address two key questions: (i) When is dropout effective as an augmentation strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA transformations to targeted layers in neural networks. Through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout across layers does not consistently improve performance. Instead, dropout proves most beneficial in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation, and that performance trends invert when moving from contrastive tasks to supervised tasks. Our analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation -- a notable issue in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation can outperform traditional input-level augmentations. This simple yet powerful approach can be seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both performance and generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.