Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Accurate Post-Training Quantization for Vision Transformer (2303.14341v1)

Published 25 Mar 2023 in cs.CV

Abstract: Vision transformer emerges as a potential architecture for vision tasks. However, the intense computation and non-negligible delay hinder its application in the real world. As a widespread model compression technique, existing post-training quantization methods still cause severe performance drops. We find the main reasons lie in (1) the existing calibration metric is inaccurate in measuring the quantization influence for extremely low-bit representation, and (2) the existing quantization paradigm is unfriendly to the power-law distribution of Softmax. Based on these observations, we propose a novel Accurate Post-training Quantization framework for Vision Transformer, namely APQ-ViT. We first present a unified Bottom-elimination Blockwise Calibration scheme to optimize the calibration metric to perceive the overall quantization disturbance in a blockwise manner and prioritize the crucial quantization errors that influence more on the final output. Then, we design a Matthew-effect Preserving Quantization for Softmax to maintain the power-law character and keep the function of the attention mechanism. Comprehensive experiments on large-scale classification and detection datasets demonstrate that our APQ-ViT surpasses the existing post-training quantization methods by convincing margins, especially in lower bit-width settings (e.g., averagely up to 5.17% improvement for classification and 24.43% for detection on W4A4). We also highlight that APQ-ViT enjoys versatility and works well on diverse transformer variants.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yifu Ding (28 papers)
  2. Haotong Qin (60 papers)
  3. Qinghua Yan (3 papers)
  4. Zhenhua Chai (55 papers)
  5. Junjie Liu (71 papers)
  6. Xiaolin Wei (42 papers)
  7. Xianglong Liu (128 papers)
Citations (47)

Summary

We haven't generated a summary for this paper yet.