Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TSPTQ-ViT: Two-scaled post-training quantization for vision transformer (2305.12901v1)

Published 22 May 2023 in eess.IV

Abstract: Vision transformers (ViTs) have achieved remarkable performance in various computer vision tasks. However, intensive memory and computation requirements impede ViTs from running on resource-constrained edge devices. Due to the non-normally distributed values after Softmax and GeLU, post-training quantization on ViTs results in severe accuracy degradation. Moreover, conventional methods fail to address the high channel-wise variance in LayerNorm. To reduce the quantization loss and improve classification accuracy, we propose a two-scaled post-training quantization scheme for vision transformer (TSPTQ-ViT). We design the value-aware two-scaled scaling factors (V-2SF) specialized for post-Softmax and post-GeLU values, which leverage the bit sparsity in non-normal distribution to save bit-widths. In addition, the outlier-aware two-scaled scaling factors (O-2SF) are introduced to LayerNorm, alleviating the dominant impacts from outlier values. Our experimental results show that the proposed methods reach near-lossless accuracy drops (<0.5%) on the ImageNet classification task under 8-bit fully quantized ViTs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yu-Shan Tai (4 papers)
  2. Ming-Guang Lin (2 papers)
  3. An-Yeu (7 papers)
  4. Wu (18 papers)
Citations (5)