Do Random and Chaotic Sequences Really Cause Different PSO Performance? (2303.14099v2)
Abstract: Our topic is performance differences between using random and chaos for particle swarm optimization (PSO). We take random sequences with different probability distributions and compare them to chaotic sequences with different but also with same density functions. This enables us to differentiate between differences in the origin of the sequences (random number generator or chaotic nonlinear system) and statistical differences expressed by the underlying distributions. Our findings (obtained by evaluating the PSO performance for various benchmark problems using statistical hypothesis testing) cast considerable doubt on previous results which compared random to chaos and suggested that the choice leads to intrinsic differences in performance.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.