Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Chebyshev and Equilibrium Measure Vs Bernstein and Lebesgue Measure (2303.13975v1)

Published 24 Mar 2023 in math.OC, math.ST, and stat.TH

Abstract: We show that Bernstein polynomials are related to the Lebesgue measure on [0, 1] in a manner similar as Chebyshev polynomials are related to the equilibrium measure of [--1, 1]. We also show that Pell's polynomial equation satisfied by Chebyshev polynomials, provides a partition of unity of [--1, 1], the analogue of the partition of unity of [0, 1] provided by Bernstein polynomials. Both partitions of unity are interpreted as a specific algebraic certificate that the constant polynomial ''1'' is positive-on [--1, 1] via Putinar's certificate of positivity (for Chebyshev), and-on [0, 1] via Handeman's certificate of positivity (for Bernstein). Then in a second step, one combines this partition of unity with an interpretation of a duality result of Nesterov in convex conic optimization to obtain an explicit connection with the equilibrium measure on --1, 1 and Lebesgue measure on 0, 1. Finally this connection is also partially established for the ''d''-dimensional simplex.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.