UniTS: A Universal Time Series Analysis Framework Powered by Self-Supervised Representation Learning (2303.13804v2)
Abstract: Machine learning has emerged as a powerful tool for time series analysis. Existing methods are usually customized for different analysis tasks and face challenges in tackling practical problems such as partial labeling and domain shift. To improve the performance and address the practical problems universally, we develop UniTS, a novel framework that incorporates self-supervised representation learning (or pre-training). The components of UniTS are designed using sklearn-like APIs to allow flexible extensions. We demonstrate how users can easily perform an analysis task using the user-friendly GUIs, and show the superior performance of UniTS over the traditional task-specific methods without self-supervised pre-training on five mainstream tasks and two practical settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.