MuxFlow: Efficient and Safe GPU Sharing in Large-Scale Production Deep Learning Clusters (2303.13803v1)
Abstract: Large-scale GPU clusters are widely-used to speed up both latency-critical (online) and best-effort (offline) deep learning (DL) workloads. However, most DL clusters either dedicate each GPU to one workload or share workloads in time, leading to very low GPU resource utilization. We present MuxFlow, the first production cluster system that supports efficient and safe space-sharing for DL workloads. NVIDIA MPS provides an opportunity to share multiple workloads in space on widely-deployed NVIDIA GPUs, but it cannot guarantee the performance and safety of online workloads. MuxFlow introduces a two-level protection mechanism for memory and computation to guarantee the performance of online workloads. Based on our practical error analysis, we design a mixed error-handling mechanism to guarantee the safety of online workloads. MuxFlow further proposes dynamic streaming multiprocessor (SM) allocation and matching-based scheduling to improve the efficiency of offline workloads. MuxFlow has been deployed at CompanyX's clusters with more than 20,000 GPUs. The deployment results indicate that MuxFlow substantially improves the GPU utilization from 26$\%$ to 76$\%$, SM activity from 16$\%$ to 33$\%$, and GPU memory from 42$\%$ to 48$\%$.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.