Papers
Topics
Authors
Recent
2000 character limit reached

Efficient and Accurate Co-Visible Region Localization with Matching Key-Points Crop (MKPC): A Two-Stage Pipeline for Enhancing Image Matching Performance (2303.13794v1)

Published 24 Mar 2023 in cs.CV and cs.LG

Abstract: Image matching is a classic and fundamental task in computer vision. In this paper, under the hypothesis that the areas outside the co-visible regions carry little information, we propose a matching key-points crop (MKPC) algorithm. The MKPC locates, proposes and crops the critical regions, which are the co-visible areas with great efficiency and accuracy. Furthermore, building upon MKPC, we propose a general two-stage pipeline for image matching, which is compatible to any image matching models or combinations. We experimented with plugging SuperPoint + SuperGlue into the two-stage pipeline, whose results show that our method enhances the performance for outdoor pose estimations. What's more, in a fair comparative condition, our method outperforms the SOTA on Image Matching Challenge 2022 Benchmark, which represents the hardest outdoor benchmark of image matching currently.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.