Coupled vector Gauss-Bonnet theories and hairy black holes (2303.13717v2)
Abstract: We study vector-tensor theories in which a 4-dimensional vector field $A_{\mu}$ is coupled to a vector quantity ${\cal J}{\mu}$, which is expressed in terms of $A_{\mu}$ and a metric tensor $g_{\mu \nu}$. The divergence of ${\cal J}{\mu}$ is equivalent to a Gauss-Bonnet (GB) term. We show that an interacting Lagrangian of the form $f(X)A_{\mu}{\cal J}{\mu}$, where $f$ is an arbitrary function of $X=-(1/2)A_{\mu}A{\mu}$, belongs to a scheme of beyond generalized Proca theories. For $f(X)=\alpha={\rm constant}$, this interacting Lagrangian reduces to a particular class of generalized Proca theories. We apply the latter coupling to a static and spherically symmetric vacuum configuration by incorporating the Einstein-Hilbert term, Maxwell scalar, and vector mass term $\eta X$ ($\eta$ is a constant). Under an expansion of the small coupling constant $\alpha$ with $\eta \neq 0$, we derive hairy black hole solutions endowed with nonvanishing temporal and radial vector field profiles. The asymptotic properties of solutions around the horizon and at spatial infinity are different from those of hairy black holes present in scalar-GB theories. We also show that black hole solutions without the vector mass term, i.e., $\eta=0$, are prone to ghost instability of odd-parity perturbations.
- C. M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc] .
- L. Barack et al., Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- M. Ostrogradsky, Mem. Acad. St. Petersbourg 6, 385 (1850).
- R. P. Woodard, Scholarpedia 10, 32243 (2015), arXiv:1506.02210 [hep-th] .
- C. Lanczos, Annals Math. 39, 842 (1938).
- D. Lovelock, J. Math. Phys. 12, 498 (1971).
- K. S. Stelle, Gen. Rel. Grav. 9, 353 (1978).
- B. Zwiebach, Phys. Lett. B 156, 315 (1985).
- D. J. Gross and J. H. Sloan, Nucl. Phys. B 291, 41 (1987).
- R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B 293, 385 (1987).
- P. Pani and V. Cardoso, Phys. Rev. D 79, 084031 (2009), arXiv:0902.1569 [gr-qc] .
- T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014a), arXiv:1312.3622 [gr-qc] .
- T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D 90, 124063 (2014b), arXiv:1408.1698 [gr-qc] .
- D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066 (2014), [Erratum: Phys.Rev.D 91, 069905 (2015)], arXiv:1405.2133 [gr-qc] .
- D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, 131103 (2018), arXiv:1711.01187 [gr-qc] .
- M. Minamitsuji and T. Ikeda, Phys. Rev. D 99, 044017 (2019), arXiv:1812.03551 [gr-qc] .
- M. Minamitsuji and S. Tsujikawa, Phys. Rev. D 106, 064008 (2022), arXiv:2207.04461 [gr-qc] .
- A. Toporensky and S. Tsujikawa, Phys. Rev. D 65, 123509 (2002), arXiv:gr-qc/0202067 .
- T. Koivisto and D. F. Mota, Phys. Lett. B 644, 104 (2007a), arXiv:astro-ph/0606078 .
- T. Koivisto and D. F. Mota, Phys. Rev. D 75, 023518 (2007b), arXiv:hep-th/0609155 .
- M. Satoh and J. Soda, JCAP 09, 019 (2008), arXiv:0806.4594 [astro-ph] .
- Z.-K. Guo and D. J. Schwarz, Phys. Rev. D 80, 063523 (2009), arXiv:0907.0427 [hep-th] .
- S. Kawai and J. Kim, Phys. Lett. B 789, 145 (2019), arXiv:1702.07689 [hep-th] .
- S. Kawai and J. Kim, Phys. Rev. D 104, 083545 (2021a), arXiv:2108.01340 [astro-ph.CO] .
- F. Zhang, Phys. Rev. D 105, 063539 (2022), arXiv:2112.10516 [gr-qc] .
- S. Kawai and J. Kim, Phys. Rev. D 104, 043525 (2021b), arXiv:2105.04386 [hep-ph] .
- R. Kawaguchi and S. Tsujikawa, Phys. Rev. D 107, 063508 (2023), arXiv:2211.13364 [astro-ph.CO] .
- S. Tsujikawa, Phys. Lett. B 838, 137751 (2023), arXiv:2212.10022 [gr-qc] .
- T. Chiba, JCAP 03, 008 (2005), arXiv:gr-qc/0502070 .
- A. De Felice and T. Suyama, Phys. Rev. D 80, 083523 (2009a), arXiv:0907.5378 [astro-ph.CO] .
- A. De Felice and T. Suyama, JCAP 06, 034 (2009b), arXiv:0904.2092 [astro-ph.CO] .
- S. Mukohyama, JHEP 05, 048 (2007), arXiv:hep-th/0610254 .
- A. Colleaux, Regular black hole and cosmological spacetimes in Non-Polynomial Gravity theories, Ph.D. thesis, Trento U. (2019).
- G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
- L. Heisenberg, JCAP 05, 015 (2014), arXiv:1402.7026 [hep-th] .
- G. Tasinato, JHEP 04, 067 (2014), arXiv:1402.6450 [hep-th] .
- J. Beltran Jimenez and L. Heisenberg, Phys. Lett. B 757, 405 (2016), arXiv:1602.03410 [hep-th] .
- A. Gallego Cadavid and Y. Rodriguez, Phys. Lett. B 798, 134958 (2019), arXiv:1905.10664 [hep-th] .
- T. Padmanabhan and D. Kothawala, Phys. Rept. 531, 115 (2013), arXiv:1302.2151 [gr-qc] .
- A. De Felice and S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010), arXiv:1007.2700 [astro-ph.CO] .
- A. De Felice and S. Tsujikawa, JCAP 02, 007 (2012), arXiv:1110.3878 [gr-qc] .
- R. Kase and S. Tsujikawa, Phys. Rev. D 105, 024059 (2022), arXiv:2110.12728 [gr-qc] .
- R. Kase and S. Tsujikawa, Phys. Rev. D 107, 104045 (2023), arXiv:2301.10362 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.