Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Coupled vector Gauss-Bonnet theories and hairy black holes (2303.13717v2)

Published 24 Mar 2023 in gr-qc, hep-ph, and hep-th

Abstract: We study vector-tensor theories in which a 4-dimensional vector field $A_{\mu}$ is coupled to a vector quantity ${\cal J}{\mu}$, which is expressed in terms of $A_{\mu}$ and a metric tensor $g_{\mu \nu}$. The divergence of ${\cal J}{\mu}$ is equivalent to a Gauss-Bonnet (GB) term. We show that an interacting Lagrangian of the form $f(X)A_{\mu}{\cal J}{\mu}$, where $f$ is an arbitrary function of $X=-(1/2)A_{\mu}A{\mu}$, belongs to a scheme of beyond generalized Proca theories. For $f(X)=\alpha={\rm constant}$, this interacting Lagrangian reduces to a particular class of generalized Proca theories. We apply the latter coupling to a static and spherically symmetric vacuum configuration by incorporating the Einstein-Hilbert term, Maxwell scalar, and vector mass term $\eta X$ ($\eta$ is a constant). Under an expansion of the small coupling constant $\alpha$ with $\eta \neq 0$, we derive hairy black hole solutions endowed with nonvanishing temporal and radial vector field profiles. The asymptotic properties of solutions around the horizon and at spatial infinity are different from those of hairy black holes present in scalar-GB theories. We also show that black hole solutions without the vector mass term, i.e., $\eta=0$, are prone to ghost instability of odd-parity perturbations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. C. M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  3. E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc] .
  4. L. Barack et al., Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
  5. M. Ostrogradsky, Mem. Acad. St. Petersbourg 6, 385 (1850).
  6. R. P. Woodard, Scholarpedia 10, 32243 (2015), arXiv:1506.02210 [hep-th] .
  7. C. Lanczos, Annals Math. 39, 842 (1938).
  8. D. Lovelock, J. Math. Phys. 12, 498 (1971).
  9. K. S. Stelle, Gen. Rel. Grav. 9, 353 (1978).
  10. B. Zwiebach, Phys. Lett. B 156, 315 (1985).
  11. D. J. Gross and J. H. Sloan, Nucl. Phys. B 291, 41 (1987).
  12. R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B 293, 385 (1987).
  13. P. Pani and V. Cardoso, Phys. Rev. D 79, 084031 (2009), arXiv:0902.1569 [gr-qc] .
  14. T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014a), arXiv:1312.3622 [gr-qc] .
  15. T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D 90, 124063 (2014b), arXiv:1408.1698 [gr-qc] .
  16. D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066 (2014), [Erratum: Phys.Rev.D 91, 069905 (2015)], arXiv:1405.2133 [gr-qc] .
  17. D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, 131103 (2018), arXiv:1711.01187 [gr-qc] .
  18. M. Minamitsuji and T. Ikeda, Phys. Rev. D 99, 044017 (2019), arXiv:1812.03551 [gr-qc] .
  19. M. Minamitsuji and S. Tsujikawa, Phys. Rev. D 106, 064008 (2022), arXiv:2207.04461 [gr-qc] .
  20. A. Toporensky and S. Tsujikawa, Phys. Rev. D 65, 123509 (2002), arXiv:gr-qc/0202067 .
  21. T. Koivisto and D. F. Mota, Phys. Lett. B 644, 104 (2007a), arXiv:astro-ph/0606078 .
  22. T. Koivisto and D. F. Mota, Phys. Rev. D 75, 023518 (2007b), arXiv:hep-th/0609155 .
  23. M. Satoh and J. Soda, JCAP 09, 019 (2008), arXiv:0806.4594 [astro-ph] .
  24. Z.-K. Guo and D. J. Schwarz, Phys. Rev. D 80, 063523 (2009), arXiv:0907.0427 [hep-th] .
  25. S. Kawai and J. Kim, Phys. Lett. B 789, 145 (2019), arXiv:1702.07689 [hep-th] .
  26. S. Kawai and J. Kim, Phys. Rev. D 104, 083545 (2021a), arXiv:2108.01340 [astro-ph.CO] .
  27. F. Zhang, Phys. Rev. D 105, 063539 (2022), arXiv:2112.10516 [gr-qc] .
  28. S. Kawai and J. Kim, Phys. Rev. D 104, 043525 (2021b), arXiv:2105.04386 [hep-ph] .
  29. R. Kawaguchi and S. Tsujikawa, Phys. Rev. D 107, 063508 (2023), arXiv:2211.13364 [astro-ph.CO] .
  30. S. Tsujikawa, Phys. Lett. B 838, 137751 (2023), arXiv:2212.10022 [gr-qc] .
  31. T. Chiba, JCAP 03, 008 (2005), arXiv:gr-qc/0502070 .
  32. A. De Felice and T. Suyama, Phys. Rev. D 80, 083523 (2009a), arXiv:0907.5378 [astro-ph.CO] .
  33. A. De Felice and T. Suyama, JCAP 06, 034 (2009b), arXiv:0904.2092 [astro-ph.CO] .
  34. S. Mukohyama, JHEP 05, 048 (2007), arXiv:hep-th/0610254 .
  35. A. Colleaux, Regular black hole and cosmological spacetimes in Non-Polynomial Gravity theories, Ph.D. thesis, Trento U. (2019).
  36. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
  37. L. Heisenberg, JCAP 05, 015 (2014), arXiv:1402.7026 [hep-th] .
  38. G. Tasinato, JHEP 04, 067 (2014), arXiv:1402.6450 [hep-th] .
  39. J. Beltran Jimenez and L. Heisenberg, Phys. Lett. B 757, 405 (2016), arXiv:1602.03410 [hep-th] .
  40. A. Gallego Cadavid and Y. Rodriguez, Phys. Lett. B 798, 134958 (2019), arXiv:1905.10664 [hep-th] .
  41. T. Padmanabhan and D. Kothawala, Phys. Rept. 531, 115 (2013), arXiv:1302.2151 [gr-qc] .
  42. A. De Felice and S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010), arXiv:1007.2700 [astro-ph.CO] .
  43. A. De Felice and S. Tsujikawa, JCAP 02, 007 (2012), arXiv:1110.3878 [gr-qc] .
  44. R. Kase and S. Tsujikawa, Phys. Rev. D 105, 024059 (2022), arXiv:2110.12728 [gr-qc] .
  45. R. Kase and S. Tsujikawa, Phys. Rev. D 107, 104045 (2023), arXiv:2301.10362 [gr-qc] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube