Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hypodifferentials of nonsmooth convex functions and their applications to nonsmooth convex optimization (2303.13464v2)

Published 23 Mar 2023 in math.OC

Abstract: A hypodifferential is a compact family of affine mappings that defines a local max-type approximation of a nonsmooth convex function. We present a general theory of hypodifferentials of nonsmooth convex functions defined on a Banach space. In particular, we provide complete characterizations of hypodifferentiability and hypodifferentials of nonsmooth convex functions, derive calculus rules for hypodifferentials, and study the Lipschitz continuity/Lipschitz approximation property of hypodifferentials that can be viewed as a natural extension of the Lipschitz continuity of the gradient to the general nonsmooth setting. As an application of our theoretical results, we study the rate of convergence of several versions of the method of hypodifferential descent for nonsmooth convex optimization and present an accelerated version of this method having the faster rater of convergence $\mathcal{O}(1/k2)$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.