Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

NVAutoNet: Fast and Accurate 360$^{\circ}$ 3D Visual Perception For Self Driving (2303.12976v4)

Published 23 Mar 2023 in cs.CV

Abstract: Achieving robust and real-time 3D perception is fundamental for autonomous vehicles. While most existing 3D perception methods prioritize detection accuracy, they often overlook critical aspects such as computational efficiency, onboard chip deployment friendliness, resilience to sensor mounting deviations, and adaptability to various vehicle types. To address these challenges, we present NVAutoNet: a specialized Bird's-Eye-View (BEV) perception network tailored explicitly for automated vehicles. NVAutoNet takes synchronized camera images as input and predicts 3D signals like obstacles, freespaces, and parking spaces. The core of NVAutoNet's architecture (image and BEV backbones) relies on efficient convolutional networks, optimized for high performance using TensorRT. More importantly, our image-to-BEV transformation employs simple linear layers and BEV look-up tables, ensuring rapid inference speed. Trained on an extensive proprietary dataset, NVAutoNet consistently achieves elevated perception accuracy, operating remarkably at 53 frames per second on the NVIDIA DRIVE Orin SoC. Notably, NVAutoNet demonstrates resilience to sensor mounting deviations arising from diverse car models. Moreover, NVAutoNet excels in adapting to varied vehicle types, facilitated by inexpensive model fine-tuning procedures that expedite compatibility adjustments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 9 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube