Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

COVRECON: Combining Genome-scale Metabolic Network Reconstruction and Data-driven Inverse Modeling to Reveal Changes in Metabolic Interaction Networks (2303.12526v1)

Published 21 Mar 2023 in q-bio.MN and math.OC

Abstract: One central goal of systems biology is to infer biochemical regulations from large-scale OMICS data. Many aspects of cellular physiology and organism phenotypes could be understood as a result of the metabolic interaction network dynamics. Previously, we have derived a mathematical method addressing this problem using metabolomics data for the inverse calculation of a biochemical Jacobian network. However, these algorithms for this inference are limited by two issues: they rely on structural network information that needs to be assembled manually, and they are numerically unstable due to ill-conditioned regression problems, which makes them inadequate for dealing with large-scale metabolic networks. In this work, we present a novel regression-loss based inverse Jacobian algorithm and related workflow COVRECON. It consists of two parts: a, Sim-Network and b, Inverse differential Jacobian evaluation. Sim-Network automatically generates an organism-specific enzyme and reaction dataset from Bigg and KEGG databases, which is then used to reconstruct the Jacobian's structure for a specific metabolomics dataset. Instead of directly solving a regression problem, the new inverse differential Jacobian part is based on a more robust approach and rates the biochemical interactions according to their relevance from large-scale metabolomics data. This approach is illustrated by in silico stochastic analysis with different-sized metabolic networks from the BioModels database. The advantages of COVRECON are that 1) it automatically reconstructs a data-driven superpathway metabolic interaction model; 2) more general network structures can be considered; 3) the new inverse algorithms improve stability, decrease computation time, and extend to large-scale models

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.