Papers
Topics
Authors
Recent
2000 character limit reached

Using Differential Evolution to avoid local minima in Variational Quantum Algorithms (2303.12186v2)

Published 21 Mar 2023 in quant-ph

Abstract: Variational Quantum Algorithms (VQAs) are among the most promising NISQ-era algorithms for harnessing quantum computing in diverse fields. However, the underlying optimization processes within these algorithms usually deal with local minima and barren plateau problems, preventing them from scaling efficiently. Our goal in this paper is to study alternative optimization methods that can avoid or reduce the effect of these problems. To this end, we propose to apply the Differential Evolution (DE) algorithm to VQAs optimizations. Our hypothesis is that DE is resilient to vanishing gradients and local minima for two main reasons: (i) it does not depend on gradients, and (ii) its mutation and recombination schemes allow DE to continue evolving even in these cases. To demonstrate the performance of our approach, first, we use a robust local minima problem to compare state-of-the-art local optimizers (SLSQP, COBYLA, L-BFGS-B and SPSA) against DE using the Variational Quantum Eigensolver algorithm. Our results show that DE always outperforms local optimizers. In particular, in exact simulations of a 1D Ising chain with 14 qubits, DE achieves the ground state with a 100\% success rate, while local optimizers only exhibit around 40\%. We also show that combining DE with local optimizers increases the accuracy of the energy estimation once avoiding local minima. Finally, we demonstrate how our results can be extended to more complex problems by studying DE performance in a 1D Hubbard model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.