Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High Probability Bounds for Stochastic Continuous Submodular Maximization (2303.11937v1)

Published 20 Mar 2023 in cs.DS, cs.LG, and math.OC

Abstract: We consider maximization of stochastic monotone continuous submodular functions (CSF) with a diminishing return property. Existing algorithms only guarantee the performance \textit{in expectation}, and do not bound the probability of getting a bad solution. This implies that for a particular run of the algorithms, the solution may be much worse than the provided guarantee in expectation. In this paper, we first empirically verify that this is indeed the case. Then, we provide the first \textit{high-probability} analysis of the existing methods for stochastic CSF maximization, namely PGA, boosted PGA, SCG, and SCG++. Finally, we provide an improved high-probability bound for SCG, under slightly stronger assumptions, with a better convergence rate than that of the expected solution. Through extensive experiments on non-concave quadratic programming (NQP) and optimal budget allocation, we confirm the validity of our bounds and show that even in the worst-case, PGA converges to $OPT/2$, and boosted PGA, SCG, SCG++ converge to $(1 - 1/e)OPT$, but at a slower rate than that of the expected solution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube