Estimation of Unknown Payoff Parameters in Large Network Games (2303.10262v1)
Abstract: We consider network games where a large number of agents interact according to a network sampled from a random network model, represented by a graphon. By exploiting previous results on convergence of such large network games to graphon games, we examine a procedure for estimating unknown payoff parameters, from observations of equilibrium actions, without the need for exact network information. We prove smoothness and local convexity of the optimization problem involved in computing the proposed estimator. Additionally, under a notion of graphon parameter identifiability, we show that the optimal estimator is globally unique. We present several examples of identifiable homogeneous and heterogeneous parameters in different classes of linear quadratic network games with numerical simulations to validate the proposed estimator.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.