Papers
Topics
Authors
Recent
2000 character limit reached

Model-independent bubble wall velocities in local thermal equilibrium (2303.10171v2)

Published 17 Mar 2023 in astro-ph.CO and hep-ph

Abstract: Accurately determining bubble wall velocities in first-order phase transitions is of great importance for the prediction of gravitational wave signals and the matter-antimatter asymmetry. However, it is a challenging task which typically depends on the underlying particle physics model. Recently, it has been shown that assuming local thermal equilibrium can provide a good approximation when calculating the bubble wall velocity. In this paper, we provide a model-independent determination of bubble wall velocities in local thermal equilibrium. Our results show that, under the reasonable assumption that the sound speeds in the plasma are approximately uniform, the hydrodynamics can be fully characterized by four quantities: the phase strength $\alpha_n$, the ratio of the enthalpies in the broken and symmetric phases, $\Psi_n$, and the sound speeds in both phases, $c_s$ and $c_b$. We provide a code snippet that allows for a determination of the wall velocity and energy fraction in local thermal equilibrium in any model. In addition, we present a fit function for the wall velocity in the case $c_s = c_b = 1/\sqrt 3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. B 155 (1985) 36.
  2. D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys. 14 (2012) 125003, arXiv:1206.2942 [hep-ph].
  3. B. Garbrecht, “Why is there more matter than antimatter? Calculational methods for leptogenesis and electroweak baryogenesis,” Prog. Part. Nucl. Phys. 110 (2020) 103727, arXiv:1812.02651 [hep-ph].
  4. E. Witten, “Cosmic Separation of Phases,” Phys. Rev. D 30 (1984) 272–285.
  5. A. Kosowsky, M. S. Turner, and R. Watkins, “Gravitational radiation from colliding vacuum bubbles,” Phys. Rev. D 45 (1992) 4514–4535.
  6. A. Kosowsky and M. S. Turner, “Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions,” Phys. Rev. D 47 (1993) 4372–4391, arXiv:astro-ph/9211004.
  7. M. Kamionkowski, A. Kosowsky, and M. S. Turner, “Gravitational radiation from first order phase transitions,” Phys. Rev. D 49 (1994) 2837–2851, arXiv:astro-ph/9310044.
  8. S. J. Huber and T. Konstandin, “Gravitational Wave Production by Collisions: More Bubbles,” JCAP 09 (2008) 022, arXiv:0806.1828 [hep-ph].
  9. M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Gravitational waves from the sound of a first order phase transition,” Phys. Rev. Lett. 112 (2014) 041301, arXiv:1304.2433 [hep-ph].
  10. C. Grojean and G. Servant, “Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond,” Phys. Rev. D 75 (2007) 043507, arXiv:hep-ph/0607107.
  11. C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35 no. 16, (2018) 163001, arXiv:1801.04268 [astro-ph.CO].
  12. C. Caprini et al., “Detecting gravitational waves from cosmological phase transitions with LISA: an update,” JCAP 03 (2020) 024, arXiv:1910.13125 [astro-ph.CO].
  13. LISA Cosmology Working Group Collaboration, P. Auclair et al., “Cosmology with the Laser Interferometer Space Antenna,” arXiv:2204.05434 [astro-ph.CO].
  14. J. M. Cline and K. Kainulainen, “Electroweak baryogenesis at high bubble wall velocities,” Phys. Rev. D 101 no. 6, (2020) 063525, arXiv:2001.00568 [hep-ph].
  15. J. M. Cline and B. Laurent, “Electroweak baryogenesis from light fermion sources: A critical study,” Phys. Rev. D 104 no. 8, (2021) 083507, arXiv:2108.04249 [hep-ph].
  16. J. Ellis, M. Lewicki, M. Merchand, J. M. No, and M. Zych, “The scalar singlet extension of the Standard Model: gravitational waves versus baryogenesis,” JHEP 01 (2023) 093, arXiv:2210.16305 [hep-ph].
  17. J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant, “Energy Budget of Cosmological First-order Phase Transitions,” JCAP 06 (2010) 028, arXiv:1004.4187 [hep-ph].
  18. C. Caprini et al., “Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions,” JCAP 04 (2016) 001, arXiv:1512.06239 [astro-ph.CO].
  19. C. Gowling and M. Hindmarsh, “Observational prospects for phase transitions at LISA: Fisher matrix analysis,” JCAP 10 (2021) 039, arXiv:2106.05984 [astro-ph.CO].
  20. P. J. Steinhardt, “Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay,” Phys. Rev. D 25 (1982) 2074.
  21. M. Laine, “Bubble growth as a detonation,” Phys. Rev. D 49 (1994) 3847–3853, arXiv:hep-ph/9309242.
  22. H. Kurki-Suonio and M. Laine, “Supersonic deflagrations in cosmological phase transitions,” Phys. Rev. D 51 (1995) 5431–5437, arXiv:hep-ph/9501216.
  23. J. Ignatius, K. Kajantie, H. Kurki-Suonio, and M. Laine, “The growth of bubbles in cosmological phase transitions,” Phys. Rev. D 49 (1994) 3854–3868, arXiv:astro-ph/9309059.
  24. A. F. Heckler, “The Effects of electroweak phase transition dynamics on baryogenesis and primordial nucleosynthesis,” Phys. Rev. D 51 (1995) 405–428, arXiv:astro-ph/9407064.
  25. H. Kurki-Suonio and M. Laine, “Real time history of the cosmological electroweak phase transition,” Phys. Rev. Lett. 77 (1996) 3951–3954, arXiv:hep-ph/9607382.
  26. S. J. Huber and M. Sopena, “The bubble wall velocity in the minimal supersymmetric light stop scenario,” Phys. Rev. D 85 (2012) 103507, arXiv:1112.1888 [hep-ph].
  27. S. J. Huber and M. Sopena, “An efficient approach to electroweak bubble velocities,” arXiv:1302.1044 [hep-ph].
  28. M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde, and D. A. Linde, “Towards the theory of the electroweak phase transition,” Phys. Rev. D 46 (1992) 550–571, arXiv:hep-ph/9203203.
  29. B.-H. Liu, L. D. McLerran, and N. Turok, “Bubble nucleation and growth at a baryon number producing electroweak phase transition,” Phys. Rev. D 46 (1992) 2668–2688.
  30. G. D. Moore, “Electroweak bubble wall friction: Analytic results,” JHEP 03 (2000) 006, arXiv:hep-ph/0001274.
  31. G. D. Moore and T. Prokopec, “How fast can the wall move? A Study of the electroweak phase transition dynamics,” Phys. Rev. D 52 (1995) 7182–7204, arXiv:hep-ph/9506475.
  32. G. D. Moore and T. Prokopec, “Bubble wall velocity in a first order electroweak phase transition,” Phys. Rev. Lett. 75 (1995) 777–780, arXiv:hep-ph/9503296.
  33. B. Laurent and J. M. Cline, “Fluid equations for fast-moving electroweak bubble walls,” Phys. Rev. D 102 no. 6, (2020) 063516, arXiv:2007.10935 [hep-ph].
  34. B. Laurent and J. M. Cline, “First principles determination of bubble wall velocity,” Phys. Rev. D 106 no. 2, (2022) 023501, arXiv:2204.13120 [hep-ph].
  35. G. C. Dorsch, S. J. Huber, and T. Konstandin, “Bubble wall velocities in the Standard Model and beyond,” JCAP 12 (2018) 034, arXiv:1809.04907 [hep-ph].
  36. X. Wang, F. P. Huang, and X. Zhang, “Bubble wall velocity beyond leading-log approximation in electroweak phase transition,” arXiv:2011.12903 [hep-ph].
  37. S. Jiang, F. P. Huang, and X. Wang, “Bubble wall velocity during electroweak phase transition in the inert doublet model,” arXiv:2211.13142 [hep-ph].
  38. S. Höche, J. Kozaczuk, A. J. Long, J. Turner, and Y. Wang, “Towards an all-orders calculation of the electroweak bubble wall velocity,” JCAP 03 (2021) 009, arXiv:2007.10343 [hep-ph].
  39. A. Friedlander, I. Banta, J. M. Cline, and D. Tucker-Smith, “Wall speed and shape in singlet-assisted strong electroweak phase transitions,” Phys. Rev. D 103 no. 5, (2021) 055020, arXiv:2009.14295 [hep-ph].
  40. A. Azatov and M. Vanvlasselaer, “Bubble wall velocity: heavy physics effects,” JCAP 01 (2021) 058, arXiv:2010.02590 [hep-ph].
  41. R.-G. Cai and S.-J. Wang, “Effective picture of bubble expansion,” JCAP 03 (2021) 096, arXiv:2011.11451 [astro-ph.CO].
  42. J. M. Cline, A. Friedlander, D.-M. He, K. Kainulainen, B. Laurent, and D. Tucker-Smith, “Baryogenesis and gravity waves from a UV-completed electroweak phase transition,” Phys. Rev. D 103 no. 12, (2021) 123529, arXiv:2102.12490 [hep-ph].
  43. Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, D. Mateos, M. Sanchez-Garitaonandia, and M. Zilhão, “Bubble wall velocity from holography,” Phys. Rev. D 104 no. 12, (2021) L121903, arXiv:2104.05708 [hep-th].
  44. F. Bigazzi, A. Caddeo, T. Canneti, and A. L. Cotrone, “Bubble wall velocity at strong coupling,” JHEP 08 (2021) 090, arXiv:2104.12817 [hep-ph].
  45. M. Lewicki, M. Merchand, and M. Zych, “Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma,” JHEP 02 (2022) 017, arXiv:2111.02393 [astro-ph.CO].
  46. Y. Gouttenoire, R. Jinno, and F. Sala, “Friction pressure on relativistic bubble walls,” JHEP 05 (2022) 004, arXiv:2112.07686 [hep-ph].
  47. G. C. Dorsch, S. J. Huber, and T. Konstandin, “A sonic boom in bubble wall friction,” JCAP 04 no. 04, (2022) 010, arXiv:2112.12548 [hep-ph].
  48. S. De Curtis, L. D. Rose, A. Guiggiani, A. G. Muyor, and G. Panico, “Bubble wall dynamics at the electroweak phase transition,” JHEP 03 (2022) 163, arXiv:2201.08220 [hep-ph].
  49. S.-J. Wang and Z.-Y. Yuwen, “Hydrodynamic backreaction force of cosmological bubble expansion,” Phys. Rev. D 107 no. 2, (2023) 023501, arXiv:2205.02492 [hep-ph].
  50. M. Lewicki, V. Vaskonen, and H. Veermäe, “Bubble dynamics in fluids with N-body simulations,” Phys. Rev. D 106 no. 10, (2022) 103501, arXiv:2205.05667 [astro-ph.CO].
  51. W.-Y. Ai, J. S. Cruz, B. Garbrecht, and C. Tamarit, “Instability of bubble expansion at zero temperature,” Phys. Rev. D 107 no. 3, (2023) 036014, arXiv:2209.00639 [hep-th].
  52. I. Garcia Garcia, G. Koszegi, and R. Petrossian-Byrne, “Reflections on Bubble Walls,” arXiv:2212.10572 [hep-ph].
  53. L. Li, S.-J. Wang, and Z.-Y. Yuwen, “Bubble expansion at strong coupling,” arXiv:2302.10042 [hep-th].
  54. T. Krajewski, M. Lewicki, and M. Zych, “Hydrodynamical constraints on bubble wall velocity,” arXiv:2303.18216 [astro-ph.CO].
  55. T. Konstandin and J. M. No, “Hydrodynamic obstruction to bubble expansion,” JCAP 02 (2011) 008, arXiv:1011.3735 [hep-ph].
  56. M. Barroso Mancha, T. Prokopec, and B. Swiezewska, “Field-theoretic derivation of bubble-wall force,” JHEP 01 (2021) 070, arXiv:2005.10875 [hep-th].
  57. S. Balaji, M. Spannowsky, and C. Tamarit, “Cosmological bubble friction in local equilibrium,” JCAP 03 (2021) 051, arXiv:2010.08013 [hep-ph].
  58. W.-Y. Ai, B. Garbrecht, and C. Tamarit, “Bubble wall velocities in local equilibrium,” JCAP 03 no. 03, (2022) 015, arXiv:2109.13710 [hep-ph].
  59. L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Pergamon Press, New York, 1989.
  60. F. Giese, T. Konstandin, and J. van de Vis, “Model-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model,” JCAP 07 no. 07, (2020) 057, arXiv:2004.06995 [astro-ph.CO].
  61. F. Giese, T. Konstandin, K. Schmitz, and J. van de Vis, “Model-independent energy budget for LISA,” JCAP 01 (2021) 072, arXiv:2010.09744 [astro-ph.CO].
  62. L. Leitao and A. Megevand, “Hydrodynamics of phase transition fronts and the speed of sound in the plasma,” Nucl. Phys. B 891 (2015) 159–199, arXiv:1410.3875 [hep-ph].
  63. T. V. I. Tenkanen and J. van de Vis, “Speed of sound in cosmological phase transitions and effect on gravitational waves,” JHEP 08 (2022) 302, arXiv:2206.01130 [hep-ph].
  64. M. Laine and M. Meyer, “Standard Model thermodynamics across the electroweak crossover,” JCAP 07 (2015) 035, arXiv:1503.04935 [hep-ph].
  65. F. R. Ares, M. Hindmarsh, C. Hoyos, and N. Jokela, “Gravitational waves from a holographic phase transition,” JHEP 21 (2020) 100, arXiv:2011.12878 [hep-th].
  66. R. A. Janik, M. Jarvinen, H. Soltanpanahi, and J. Sonnenschein, “Perfect Fluid Hydrodynamic Picture of Domain Wall Velocities at Strong Coupling,” Phys. Rev. Lett. 129 no. 8, (2022) 081601, arXiv:2205.06274 [hep-th].
  67. D. Bodeker and G. D. Moore, “Can electroweak bubble walls run away?,” JCAP 05 (2009) 009, arXiv:0903.4099 [hep-ph].
  68. D. Bodeker and G. D. Moore, “Electroweak Bubble Wall Speed Limit,” JCAP 05 (2017) 025, arXiv:1703.08215 [hep-ph].
  69. M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Numerical simulations of acoustically generated gravitational waves at a first order phase transition,” Phys. Rev. D 92 no. 12, (2015) 123009, arXiv:1504.03291 [astro-ph.CO].
  70. M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Shape of the acoustic gravitational wave power spectrum from a first order phase transition,” Phys. Rev. D 96 no. 10, (2017) 103520, arXiv:1704.05871 [astro-ph.CO]. [Erratum: Phys.Rev.D 101, 089902 (2020)].
  71. R. Jinno, T. Konstandin, and H. Rubira, “A hybrid simulation of gravitational wave production in first-order phase transitions,” JCAP 04 (2021) 014, arXiv:2010.00971 [astro-ph.CO].
  72. R. Jinno, T. Konstandin, H. Rubira, and I. Stomberg, “Higgsless simulations of cosmological phase transitions and gravitational waves,” JCAP 02 (2023) 011, arXiv:2209.04369 [astro-ph.CO].
  73. D. Cutting, M. Hindmarsh, and D. J. Weir, “Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions,” Phys. Rev. Lett. 125 no. 2, (2020) 021302, arXiv:1906.00480 [hep-ph].
  74. S. De Curtis, L. Delle Rose, A. Guiggiani, A. Gil Muyor, and G. Panico, “Collision integrals for cosmological phase transitions,” JHEP 05 (2023) 194, arXiv:2303.05846 [hep-ph].
Citations (33)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.