Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Comparative Evaluation of Data Decoupling Techniques for Federated Machine Learning with Database as a Service (2303.08371v1)

Published 15 Mar 2023 in cs.DB, cs.AI, and cs.DC

Abstract: Federated Learning (FL) is a machine learning approach that allows multiple clients to collaboratively learn a shared model without sharing raw data. However, current FL systems provide an all-in-one solution, which can hinder the wide adoption of FL in certain domains such as scientific applications. To overcome this limitation, this paper proposes a decoupling approach that enables clients to customize FL applications with specific data subsystems. To evaluate this approach, the authors develop a framework called Data-Decoupling Federated Learning (DDFL) and compare it with state-of-the-art FL systems that tightly couple data management and computation. Extensive experiments on various datasets and data management subsystems show that DDFL achieves comparable or better performance in terms of training time, inference accuracy, and database query time. Moreover, DDFL provides clients with more options to tune their FL applications regarding data-related metrics. The authors also provide a detailed qualitative analysis of DDFL when integrated with mainstream database systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube