Papers
Topics
Authors
Recent
Search
2000 character limit reached

Secrecy Gain of Formally Unimodular Lattices from Codes over the Integers Modulo 4

Published 14 Mar 2023 in cs.IT and math.IT | (2303.08083v3)

Abstract: Recently, a design criterion depending on a lattice's volume and theta series, called the secrecy gain, was proposed to quantify the secrecy-goodness of the applied lattice code for the Gaussian wiretap channel. To address the secrecy gain of Construction $\text{A}_4$ lattices from formally self-dual $\mathbb{Z}_4$-linear codes, i.e., codes for which the symmetrized weight enumerator (swe) coincides with the swe of its dual, we present new constructions of $\mathbb{Z}_4$-linear codes which are formally self-dual with respect to the swe. For even lengths, formally self-dual $\mathbb{Z}_4$-linear codes are constructed from nested binary codes and double circulant matrices. For odd lengths, a novel construction called odd extension from double circulant codes is proposed. Moreover, the concepts of Type I/II formally self-dual codes/unimodular lattices are introduced. Next, we derive the theta series of the formally unimodular lattices obtained by Construction $\text{A}_4$ from formally self-dual $\mathbb{Z}_4$-linear codes and describe a universal approach to determine their secrecy gains. The secrecy gain of Construction $\text{A}_4$ formally unimodular lattices obtained from formally self-dual $\mathbb{Z}_4$-linear codes is investigated, both for even and odd dimensions. Numerical evidence shows that for some parameters, Construction $\text{A}_4$ lattices can achieve a higher secrecy gain than the best-known formally unimodular lattices from the literature. Results concerning the flatness factor, another security criterion widely considered in the Gaussian wiretap channel, are also discussed.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.