Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Kernel-Based Identification Approach to LPV Feedforward: With Application to Motion Systems (2303.07932v2)

Published 14 Mar 2023 in eess.SY and cs.SY

Abstract: The increasing demands for motion control result in a situation where Linear Parameter-Varying (LPV) dynamics have to be taken into account. Inverse-model feedforward control for LPV motion systems is challenging, since the inverse of an LPV system is often dynamically dependent on the scheduling sequence. The aim of this paper is to develop an identification approach that directly identifies dynamically scheduled feedforward controllers for LPV motion systems from data. In this paper, the feedforward controller is parameterized in basis functions, similar to, e.g., mass-acceleration feedforward, and is identified by a kernel-based approach such that the parameter dependency for LPV motion systems is addressed. The resulting feedforward includes dynamic dependence and is learned accurately. The developed framework is validated on an example.

Citations (1)

Summary

We haven't generated a summary for this paper yet.