Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-Learning-Based Identification of LPV Models for Nonlinear Systems (2204.04060v2)

Published 8 Apr 2022 in eess.SY, cs.SY, math.DS, and math.OC

Abstract: The Linear Parameter-Varying (LPV) framework provides a modeling and control design toolchain to address nonlinear (NL) system behavior via linear surrogate models. Despite major research effort on LPV data-driven modeling, a key shortcoming of the current identification theory is that often the scheduling variable is assumed to be a given measured signal in the data set. In case of identifying an LPV model of a NL system, the selection of the scheduling map, which describes the relation to the measurable scheduling signal, is put on the users' shoulder, with only limited supporting tools available. This choice however greatly affects the usability and complexity of the resulting LPV model. This paper presents a deep-learning-based approach to provide joint estimation of a scheduling map and an LPV state-space model of a NL system from input-output data, and has consistency guarantees under general innovation-type noise conditions. Its efficiency is demonstrated on a realistic identification problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.