Spin-$s$ Rational $Q$-system (2303.07640v4)
Abstract: Bethe ansatz equations for spin-$s$ Heisenberg spin chain with $s\ge1$ are significantly more difficult to analyze than the spin-$\tfrac{1}{2}$ case, due to the presence of repeated roots. As a result, it is challenging to derive extra conditions for the Bethe roots to be physical and study the related completeness problem. In this paper, we propose the rational $Q$-system for the XXX$_s$ spin chain. Solutions of the proposed $Q$-system give all and only physical solutions of the Bethe ansatz equations required by completeness. This is checked numerically and proved rigorously. The rational $Q$-system is equivalent to the requirement that the solution and the corresponding dual solution of the $TQ$-relation are both polynomials, which we prove rigorously. Based on this analysis, we propose the extra conditions for solutions of the XXX$_s$ Bethe ansatz equations to be physical.
- L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model,” in Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, pp. pp. 149–219. 5, 1996. arXiv:hep-th/9605187.
- R. P. Langlands and Y. Saint-Aubin, “Algebro-geometric aspects of the Bethe equations,” in Strings and symmetries, pp. pp. 40–53. 1995.
- K. Fabricius and B. M. McCoy, “Bethe’s equation is incomplete for the XXZ model at roots of unity,” J. Statist. Phys. 103 (2001) 647–678, arXiv:cond-mat/0009279.
- R. J. Baxter, “Completeness of the Bethe ansatz for the six and eight vertex models,” J. Statist. Phys. 108 (2002) 1–48, arXiv:cond-mat/0111188.
- E. Mukhin, V. Tarasov, and A. Varchenko, “Bethe Algebra of Homogeneous XXX Heisenberg Model Has Simple Spectrum,” arXiv e-prints (June, 2007) arXiv:0706.0688, arXiv:0706.0688 [math.QA].
- L. V. Avdeev and A. A. Vladimirov, “ON EXCEPTIONAL SOLUTIONS OF THE BETHE ANSATZ EQUATIONS,” Theor. Math. Phys. 69 (1987) 1071.
- F. H. L. Essler, V. E. Korepin, and K. Schoutens, “Fine structure of the Bethe ansatz for the spin 1/2 Heisenberg XXX model,” J. Phys. A 25 (1992) 4115–4126.
- R. Siddharthan, “Singularities in the Bethe solution of the XXX and XXZ Heisenberg spin chains,” arXiv e-prints (Apr., 1998) cond–mat/9804210, arXiv:cond-mat/9804210 [cond-mat.str-el].
- Y. Miao, J. Lamers, and V. Pasquier, “On the Q operator and the spectrum of the XXZ model at root of unity,” SciPost Phys. 11 (2021) 067, arXiv:2012.10224 [cond-mat.stat-mech].
- R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Academic Press, 1982.
- C. Marboe and D. Volin, “Fast analytic solver of rational Bethe equations,” J. Phys. A 50 no. 20, (2017) 204002, arXiv:1608.06504 [math-ph].
- E. Granet and J. L. Jacobsen, “On zero-remainder conditions in the Bethe ansatz,” JHEP 03 (2020) 178, arXiv:1910.07797 [hep-th].
- Z. Bajnok, E. Granet, J. L. Jacobsen, and R. I. Nepomechie, “On Generalized Q𝑄Qitalic_Q-systems,” JHEP 03 (2020) 177, arXiv:1910.07805 [hep-th].
- R. I. Nepomechie, “Q-systems with boundary parameters,” arXiv:1912.12702 [hep-th].
- R. I. Nepomechie, “The Am(1)superscriptsubscript𝐴𝑚1A_{m}^{(1)}italic_A start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT Q-system,” Mod. Phys. Lett. A 35 no. 31, (2020) 2050260, arXiv:2003.06823 [hep-th].
- J. Gu, Y. Jiang, and M. Sperling, “Rational Q𝑄Qitalic_Q-systems, Higgsing and Mirror Symmetry,” arXiv:2208.10047 [hep-th].
- N. Reshetikhin, “ A method of functional equations in the theory of exactly solvable quantum systems,” Lett. Math. Phys. 7 (1983) 205–213.
- I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, “Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations,” Commun. Math. Phys. 188 (1997) 267–304, arXiv:hep-th/9604080.
- V. Kazakov, A. S. Sorin, and A. Zabrodin, “Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics,” Nucl. Phys. B 790 (2008) 345–413, arXiv:hep-th/0703147.
- V. V. Bazhanov and Z. Tsuboi, “Baxter’s Q-operators for supersymmetric spin chains,” Nucl. Phys. B 805 (2008) 451–516, arXiv:0805.4274 [hep-th].
- V. V. Bazhanov, T. Lukowski, C. Meneghelli, and M. Staudacher, “A Shortcut to the Q-Operator,” J. Stat. Mech. 1011 (2010) P11002, arXiv:1005.3261 [hep-th].
- V. Kazakov, S. Leurent, and Z. Tsuboi, “Baxter’s Q-operators and operatorial Backlund flow for quantum (super)-spin chains,” Commun. Math. Phys. 311 (2012) 787–814, arXiv:1010.4022 [math-ph].
- W. Hao, R. I. Nepomechie, and A. J. Sommese, “Completeness of solutions of Bethe’s equations,” Phys. Rev. E 88 no. 5, (2013) 052113, arXiv:1308.4645 [math-ph].
- R. I. Nepomechie and C. Wang, “Algebraic Bethe ansatz for singular solutions,” J. Phys. A 46 (2013) 325002, arXiv:1304.7978 [hep-th].
- R. I. Nepomechie and C. Wang, “Twisting singular solutions of Bethe’s equations,” J. Phys. A 47 no. 50, (2014) 505004, arXiv:1409.7382 [math-ph].
- G. P. Pronko and Y. G. Stroganov, “Bethe equations ’on the wrong side of equator’,” J. Phys. A 32 (1999) 2333–2340, arXiv:hep-th/9808153.
- W. Hao, R. I. Nepomechie, and A. J. Sommese, “Singular solutions, repeated roots and completeness for higher-spin chains,” J. Stat. Mech. 1403 (2014) P03024, arXiv:1312.2982 [math-ph].
- N. Kitanine, J. M. Maillet, G. Niccoli, and V. Terras, “On determinant representations of scalar products and form factors in the SoV approach: the XXX case,” J. Phys. A 49 no. 10, (2016) 104002, arXiv:1506.02630 [math-ph].
- J. M. Maillet and G. Niccoli, “On quantum separation of variables beyond fundamental representations,” SciPost Phys. 10 no. 2, (2021) 026, arXiv:1903.06618 [math-ph].
- Y. He, J. Hou, Y. Liu, and Z. Tan, “ Spin-s𝑠sitalic_s Q𝑄Qitalic_Q-system: twist and open boundaries,” to appear .
- A. N. Kirillov, “Combinatorial identities, and completeness of eigenstates of the Heisenberg magnet,” Journal of Soviet Mathematics 30 no. 4, (1985) 2298–2310. https://doi.org/10.1007/BF02105347.
- H. Shu, P. Zhao, R.-D. Zhu, and H. Zou, “Bethe-State Counting and the Witten Index,” arXiv:2210.07116 [hep-th].
- H. M. Babujian, “EXACT SOLUTION OF THE ISOTROPIC HEISENBERG CHAIN WITH ARBITRARY SPINS: THERMODYNAMICS OF THE MODEL,” Nucl. Phys. B 215 (1983) 317–336.
- L. A. Takhtajan, “The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins,” Phys. Lett. A 87 (1982) 479–482.
- V. Tarasov, “Completeness of the Bethe Ansatz for the Periodic Isotropic Heisenberg Model,” Rev. Math. Phys. 30 (2018) 1840018.
- Y. Jiang and Y. Zhang, “Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE,” JHEP 03 (2018) 087, arXiv:1710.04693 [hep-th].
- C. Closset and O. Khlaif, “Twisted indices, Bethe ideals and 3d 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 infrared dualities,” arXiv:2301.10753 [hep-th].
- J. Lykke Jacobsen, Y. Jiang, and Y. Zhang, “Torus partition function of the six-vertex model from algebraic geometry,” JHEP 03 (2019) 152, arXiv:1812.00447 [hep-th].
- Z. Bajnok, J. L. Jacobsen, Y. Jiang, R. I. Nepomechie, and Y. Zhang, “Cylinder partition function of the 6-vertex model from algebraic geometry,” JHEP 06 (2020) 169, arXiv:2002.09019 [hep-th].
- J. Böhm, J. L. Jacobsen, Y. Jiang, and Y. Zhang, “Geometric algebra and algebraic geometry of loop and Potts models,” JHEP 05 (2022) 068, arXiv:2202.02986 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Quantum integrability and supersymmetric vacua,” Prog. Theor. Phys. Suppl. 177 (2009) 105–119, arXiv:0901.4748 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].
- M. Bullimore, H.-C. Kim, and T. Lukowski, “Expanding the Bethe/Gauge Dictionary,” JHEP 11 (2017) 055, arXiv:1708.00445 [hep-th].
- O. Foda and M. Manabe, “Nested coordinate Bethe wavefunctions from the Bethe/gauge correspondence,” JHEP 11 (2019) 036, arXiv:1907.00493 [hep-th].
- P. Zhao and H. Zou, “Remarks on 2d Unframed Quiver Gauge Theories,” arXiv:2206.14793 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.