Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fisher Information in Time-Domain Spectroscopy (2303.07454v3)

Published 13 Mar 2023 in physics.optics and physics.chem-ph

Abstract: Spectroscopy detected in the time domain entails many techniques, such as FTIR, pump-probe, FT-Raman, and 2DES, and applications, such as molecule characterization, excited state dynamics studies, or spectra classifications. Surprisingly, all these techniques use sampling schemes that rarely exploit the a priori knowledge the scientist has before the experiment. Indeed, not all the sampling coordinates carry the same amount of information. In this work, we rationalize with examples the various advantages of a smart sampling scheme tailored to the specific experiment characteristics and/or the expected results. The application of a Fisher information approach allows for finding the best sampling scheme to minimize the variance of a desired observable, greatly improving, for example, spectral classifications and multidimensional spectroscopy. In general, we demonstrate how a smart sampling allows reducing by one to two orders of magnitude the acquisition time of an experiment while still providing a similar level of information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. C. Berthomieu and R. Hienerwadel, “Fourier transform infrared (FTIR) spectroscopy,” Photosynthesis Research, vol. 101, no. 2-3, pp. 157–170, 9 2009. [Online]. Available: https://link.springer.com/article/10.1007/s11120-009-9439-x
  2. C. Fernandez, R. Bhargava, S. M. Hewitt, I. W. Levin, . E. Wolf, . R. Hillenbrand, . F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, R. Hillenbrand, . S. Poly, M. Goikoetxea, and P. Lasch, “Compressed sensing FTIR nano-spectroscopy and nano-imaging,” Optics Express, Vol. 26, Issue 14, pp. 18115-18124, vol. 26, no. 14, pp. 18 115–18 124, 7 2018. [Online]. Available: https://opg.optica.org/viewmedia.cfm?uri=oe-26-14-18115&seq=0&html=truehttps://opg.optica.org/abstract.cfm?uri=oe-26-14-18115https://opg.optica.org/oe/abstract.cfm?uri=oe-26-14-18115
  3. T. Hirschfeld and B. Chase, “FT-Raman Spectroscopy: Development and Justification,” Applied Spectroscopy, vol. 40, no. 2, pp. 133–137, 2 1986. [Online]. Available: http://journals.sagepub.com/doi/10.1366/0003702864509538
  4. D. Naumann, “FT-INFRARED AND FT-RAMAN SPECTROSCOPY IN BIOMEDICAL RESEARCH,” Applied Spectroscopy Reviews, vol. 36, no. 2-3, pp. 239–298, 6 2001. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1081/ASR-100106157
  5. D. P. Millar, “Time-resolved fluorescence spectroscopy,” Current Opinion in Structural Biology, vol. 6, no. 5, pp. 637–642, 10 1996.
  6. K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochemical & Photobiological Sciences, vol. 4, no. 1, pp. 13–22, 12 2005. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2005/pp/b412924phttps://pubs.rsc.org/en/content/articlelanding/2005/pp/b412924p
  7. A. L. Whittock, T. T. Abiola, and V. G. Stavros, “A Perspective on Femtosecond Pump-Probe Spectroscopy in the Development of Future Sunscreens,” Journal of Physical Chemistry A, vol. 126, no. 15, pp. 2299–2308, 4 2022. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acs.jpca.2c01000
  8. M. Fushitani, “Applications of pump-probe spectroscopy,” Annual Reports Section ’C’ (Physical Chemistry), vol. 104, no. 0, pp. 272–297, 6 2008. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2008/pc/b703983mhttps://pubs.rsc.org/en/content/articlelanding/2008/pc/b703983m
  9. M. D. Fayer, “Vibrational echo chemical exchange spectroscopy,” Ultrafast Infrared Vibrational Spectroscopy, pp. 1–33, 1 2013. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/b13972/ultrafast-infrared-vibrational-spectroscopy-michael-fayer
  10. M. Khalil, N. Demirdöven, and A. Tokmakoff, “Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution,” The Journal of Physical Chemistry A, vol. 107, no. 27, pp. 5258–5279, 7 2003. [Online]. Available: https://pubs.acs.org/doi/10.1021/jp0219247
  11. A. Gelzinis, R. Augulis, V. Butkus, B. Robert, and L. Valkunas, “Two-dimensional spectroscopy for non-specialists,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1860, no. 4, pp. 271–285, 4 2019.
  12. E. Collini, “2D Electronic Spectroscopic Techniques for Quantum Technology Applications,” The Journal of Physical Chemistry C, vol. 125, no. 24, pp. 13 096–13 108, 6 2021. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jpcc.1c02693
  13. A. C. Atkinson, A. N. Donev, and R. D. Tobias, “Optimum Experimental Design With Sas,” in Optimum Experimental Designs, with SAS.   Oxford University PressOxford, 5 2007, pp. 184–192. [Online]. Available: https://academic.oup.com/book/52852/chapter/421890983
  14. Y. Shin and D. Xiu, “Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression,” SIAM Journal on Scientific Computing, vol. 38, no. 1, pp. A385–A411, 1 2016. [Online]. Available: http://epubs.siam.org/doi/10.1137/15M1015868
  15. P. Goos and B. Jones, “Optimal Design of Experiments: A Case Study Approach - Peter Goos, Bradley Jones - Google Books,” John Wiley & Sons, Ltd, 2011. [Online]. Available: https://www.wiley.com/en-us/Optimal+Design+of+Experiments%3A+A+Case+Study+Approach-p-9780470744611
  16. M. R. Palmer, B. R. Wenrich, P. Stahlfeld, and D. Rovnyak, “Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR,” Journal of Biomolecular NMR, vol. 58, no. 4, pp. 303–314, 4 2014. [Online]. Available: http://link.springer.com/10.1007/s10858-014-9823-5
  17. A. D. Schuyler, M. W. Maciejewski, H. Arthanari, and J. C. Hoch, “Knowledge-based nonuniform sampling in multidimensional NMR,” Journal of Biomolecular NMR, vol. 50, no. 3, pp. 247–262, 7 2011. [Online]. Available: http://link.springer.com/10.1007/s10858-011-9512-6
  18. B. Worley and R. Powers, “Deterministic multidimensional nonuniform gap sampling,” Journal of Magnetic Resonance, vol. 261, pp. 19–26, 12 2015. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1090780715002372
  19. S. G. Hyberts, K. Takeuchi, and G. Wagner, “Poisson-Gap Sampling and Forward Maximum Entropy Reconstruction for Enhancing the Resolution and Sensitivity of Protein NMR Data,” Journal of the American Chemical Society, vol. 132, no. 7, pp. 2145–2147, 2 2010.
  20. P. Kasprzak, M. Urbańczyk, and K. Kazimierczuk, “Clustered sparsity and Poisson-gap sampling,” Journal of Biomolecular NMR, vol. 75, no. 10-12, pp. 401–416, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10858-021-00385-7
  21. A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” GEOPHYSICS, vol. 64, no. 2, pp. 539–551, 3 1999. [Online]. Available: https://library.seg.org/doi/10.1190/1.1444560
  22. D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 4 2006. [Online]. Available: http://ieeexplore.ieee.org/document/1614066/
  23. S. Roeding, N. Klimovich, and T. Brixner, “Optimizing sparse sampling for 2D electronic spectroscopy,” Journal of Chemical Physics, vol. 146, no. 8, 2017. [Online]. Available: http://dx.doi.org/10.1063/1.4976309
  24. E. Andries and S. Martin, “Sparse Methods in Spectroscopy: An Introduction, Overview, and Perspective,” Applied Spectroscopy, vol. 67, no. 6, pp. 579–593, 6 2013. [Online]. Available: http://journals.sagepub.com/doi/10.1366/13-07021
  25. Z. Wang, S. Lei, K. J. Karki, A. Jakobsson, and T. Pullerits, “Compressed Sensing for Reconstructing Coherent Multidimensional Spectra,” The Journal of Physical Chemistry A, vol. 124, no. 9, pp. 1861–1866, 3 2020. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jpca.9b11681
  26. G. Carlström, F. Elvander, J. Swärd, A. Jakobsson, and M. Akke, “Rapid nmr relaxation measurements using optimal nonuniform sampling of multidimensional accordion data analyzed by a sparse reconstruction method,” Journal of Physical Chemistry A, vol. 123, no. 27, pp. 5718–5723, 6 2019. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acs.jpca.9b04152
  27. J. Swärd, F. Elvander, and A. Jakobsson, “Designing sampling schemes for multi-dimensional data,” Signal Processing, vol. 150, pp. 1–10, 9 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0165168418301099
  28. J. Swärd, S. I. Adalbjörnsson, and A. Jakobsson, “High resolution sparse estimation of exponentially decaying N-dimensional signals,” Signal Processing, vol. 128, pp. 309–317, 11 2016.
  29. D. Potts, M. Tasche, and T. Volkmer, “Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT,” Frontiers in Applied Mathematics and Statistics, vol. 2, p. 1, 2 2016.
  30. A. Elsener and S. van de Geer, “Sparse spectral estimation with missing and corrupted measurements,” Stat, vol. 8, no. 1, p. e229, 1 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/sta4.229https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.229https://onlinelibrary.wiley.com/doi/10.1002/sta4.229
  31. A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, and E.-J. Wagenmakers, “A Tutorial on Fisher information,” Journal of Mathematical Psychology, vol. 80, pp. 40–55, 10 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0022249617301396
  32. G. Lachs, “Effects of Photon Bunching on Shot Noise in Photoelectric Detection,” Journal of Applied Physics, vol. 39, no. 9, pp. 4193–4199, 8 1968. [Online]. Available: https://pubs.aip.org/jap/article/39/9/4193/507384/Effects-of-Photon-Bunching-on-Shot-Noise-in
  33. W. Hoeffding, “Asymptotic Normality.”   Springer, New York, NY, 1994, pp. 617–625. [Online]. Available: http://link.springer.com/10.1007/978-1-4612-0865-5_44
  34. F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annual Review of Physical Chemistry, vol. 66, no. 1, pp. 667–690, 4 2015. [Online]. Available: https://www.annualreviews.org/doi/10.1146/annurev-physchem-040513-103623
  35. L. Bolzonello, M. Bruschi, B. Fresch, and N. F. van Hulst, “Nonlinear Optical Spectroscopy of Molecular Assemblies: What Is Gained and Lost in Action Detection?” The Journal of Physical Chemistry Letters, vol. 14, no. 50, pp. 11 438–11 446, 12 2023. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02824
  36. S. Draeger, S. Roeding, and T. Brixner, “Rapid-scan coherent 2D fluorescence spectroscopy,” Optics Express, vol. 25, no. 4, p. 3259, 2 2017. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=oe-25-4-3259
  37. L. Bolzonello, F. Bernal-Texca, L. G. Gerling, J. Ockova, E. Collini, J. Martorell, and N. F. van Hulst, “Photocurrent-Detected 2D Electronic Spectroscopy Reveals Ultrafast Hole Transfer in Operating PM6/Y6 Organic Solar Cells,” The Journal of Physical Chemistry Letters, vol. 12, no. 16, pp. 3983–3988, 4 2021. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00822
  38. K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nature Communications, vol. 5, no. 1, p. 5869, 12 2014. [Online]. Available: http://www.nature.com/articles/ncomms6869
  39. H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” The Journal of Chemical Physics, vol. 129, no. 12, p. 124501, 9 2008. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.2978381
  40. A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nature Communications, vol. 7, no. 1, p. 10434, 4 2016. [Online]. Available: http://www.nature.com/articles/ncomms10434
  41. J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H. Marcus, and A. Aspuru-Guzik, “Compressed Sensing for Multidimensional Spectroscopy Experiments,” The Journal of Physical Chemistry Letters, vol. 3, no. 18, pp. 2697–2702, 9 2012. [Online]. Available: https://pubs.acs.org/doi/10.1021/jz300988p
  42. I. Bhattacharya, J. J. Humston, C. M. Cheatum, and M. Jacob, “Accelerating two-dimensional infrared spectroscopy while preserving lineshapes using GIRAF,” Optics Letters, vol. 42, no. 22, p. 4573, 11 2017. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=ol-42-22-4573
  43. J. J. Humston, I. Bhattacharya, M. Jacob, and C. M. Cheatum, “Optimized reconstructions of compressively sampled two-dimensional infrared spectra,” The Journal of Chemical Physics, vol. 150, no. 23, p. 234202, 6 2019. [Online]. Available: https://pubs.aip.org/jcp/article/150/23/234202/197807/Optimized-reconstructions-of-compressively-sampled
  44. A. Sahu, V. N. Bhat, S. Patra, and V. Tiwari, “High-sensitivity fluorescence-detected multidimensional electronic spectroscopy through continuous pump–probe delay scan,” The Journal of Chemical Physics, vol. 158, no. 2, 1 2023. [Online]. Available: https://pubs.aip.org/jcp/article/158/2/024201/2868157/High-sensitivity-fluorescence-detected

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube