Papers
Topics
Authors
Recent
2000 character limit reached

New bounds in the discrete analogue of Minkowski's second theorem (2303.07384v2)

Published 13 Mar 2023 in math.MG and math.CO

Abstract: We adapt an argument of Tao and Vu to show that if $\lambda_1\le\cdots\le\lambda_d$ are the successive minima of an origin-symmetric convex body $K$ with respect to some lattice $\Lambda<\mathbb{R}d$, and if we set $k=\max{j:\lambda_j\le1}$, then $K$ contains at most $2k(1+\frac{\lambda_k}2)k/\lambda_1\cdots\lambda_k$ lattice points. This provides improved bounds in a conjecture of Betke, Henk and Wills (1993), and verifies that conjecture asymptotically as $\lambda_k\to0$. We also obtain a similar result without the symmetry assumption.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.