Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RotoGBML: Towards Out-of-Distribution Generalization for Gradient-Based Meta-Learning (2303.06679v1)

Published 12 Mar 2023 in cs.CV

Abstract: Gradient-based meta-learning (GBML) algorithms are able to fast adapt to new tasks by transferring the learned meta-knowledge, while assuming that all tasks come from the same distribution (in-distribution, ID). However, in the real world, they often suffer from an out-of-distribution (OOD) generalization problem, where tasks come from different distributions. OOD exacerbates inconsistencies in magnitudes and directions of task gradients, which brings challenges for GBML to optimize the meta-knowledge by minimizing the sum of task gradients in each minibatch. To address this problem, we propose RotoGBML, a novel approach to homogenize OOD task gradients. RotoGBML uses reweighted vectors to dynamically balance diverse magnitudes to a common scale and uses rotation matrixes to rotate conflicting directions close to each other. To reduce overhead, we homogenize gradients with the features rather than the network parameters. On this basis, to avoid the intervention of non-causal features (e.g., backgrounds), we also propose an invariant self-information (ISI) module to extract invariant causal features (e.g., the outlines of objects). Finally, task gradients are homogenized based on these invariant causal features. Experiments show that RotoGBML outperforms other state-of-the-art methods on various few-shot image classification benchmarks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.