Explicit approximation of the invariant measure for SDDEs with the nonlinear diffusion term (2303.05702v1)
Abstract: To our knowledge, the existing measure approximation theory requires the diffusion term of the stochastic delay differential equations (SDDEs) to be globally Lipschitz continuous. Our work is to develop a new explicit numerical method for SDDEs with the nonlinear diffusion term and establish the measure approximation theory. Precisely, we construct a function-valued explicit truncated Euler-Maruyama segment process (TEMSP) and prove that it admits a unique ergodic numerical invariant measure. We also prove that the numerical invariant measure converges to the underlying one of SDDE in the Fortet-Mourier distance. Finally, we give an example and numerical simulations to support our theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.