Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Explicit approximation of the invariant measure for SDDEs with the nonlinear diffusion term (2303.05702v1)

Published 10 Mar 2023 in math.PR, cs.NA, and math.NA

Abstract: To our knowledge, the existing measure approximation theory requires the diffusion term of the stochastic delay differential equations (SDDEs) to be globally Lipschitz continuous. Our work is to develop a new explicit numerical method for SDDEs with the nonlinear diffusion term and establish the measure approximation theory. Precisely, we construct a function-valued explicit truncated Euler-Maruyama segment process (TEMSP) and prove that it admits a unique ergodic numerical invariant measure. We also prove that the numerical invariant measure converges to the underlying one of SDDE in the Fortet-Mourier distance. Finally, we give an example and numerical simulations to support our theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.